Skip to main content

Predicting Drug Interactions From Chemogenomics Using INDIGO

  • Protocol
  • First Online:
Systems Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1888))

Abstract

Designing effective antibiotic combination regimens is critical for countering drug resistance in pathogens. Yet the large combinatorial search-space makes the identification of effective combinations a significant challenge. There is a great need for computational approaches that can rapidly prioritize potential combination regimens based on the antagonistic and synergistic interactions among the constituent antibiotics. This protocol outlines the steps to predict antibiotic interactions from chemogenomics data using the INDIGO algorithm. INDIGO predicted novel drug–drug interaction outcomes quantitatively with high accuracy based on experimental evaluation of predictions in E. coli and S. aureus, and it overcomes several limitations of existing drug-interaction prediction algorithms. The INDIGO approach also expands the applicability of chemogenomic data from model organisms to a broader set of less-studied pathogens. INDIGO can predict drug-interaction outcomes in the bacterial pathogens S. aureus and M. tuberculosis, using chemogenomics data from E. coli by quantifying the degree of conservation of the drug–gene interaction network between different species. The INDIGO approach, which is demonstrated for E. coli and S. aureus in this protocol, can be applied easily to other organisms including pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690. https://doi.org/10.1038/nchembio.118

    Article  CAS  PubMed  Google Scholar 

  2. Mdluli K, Kaneko T, Upton A (2015) The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 5(6). https://doi.org/10.1101/cshperspect.a021154

  3. Ramon-Garcia S, Ng C, Anderson H, Chao JD, Zheng X, Pfeifer T, Av-Gay Y, Roberge M, Thompson CJ (2011) Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother 55(8):3861–3869. https://doi.org/10.1128/AAC.00474-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baym M, Stone LK, Kishony R (2016) Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351(6268):aad3292. https://doi.org/10.1126/science.aad3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lobritz MA, Belenky P, Porter CBM, Gutierrez A, Yang JH, Schwarz EG, Dwyer DJ, Khalil AS, Collins JJ (2015) Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci 112(27):8173–8180. https://doi.org/10.1073/pnas.1509743112

    Article  CAS  PubMed  Google Scholar 

  6. Silva A, Lee B-Y, Clemens DL, Kee T, Ding X, Ho C-M, Horwitz MA (2016) Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model. Proc Natl Acad Sci 113(15):E2172–E2179

    Article  CAS  Google Scholar 

  7. Chandrasekaran S, Cokol-Cakmak M, Sahin N, Yilancioglu K, Kazan H, Collins JJ, Cokol M (2016) Chemogenomics and orthology-based design of antibiotic combination therapies. Mol Syst Biol 12(5):872. https://doi.org/10.15252/msb.20156777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM, Lee KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA (2011) Phenotypic landscape of a bacterial cell. Cell 144(1):143–156. https://doi.org/10.1016/j.cell.2010.11.052

    Article  CAS  PubMed  Google Scholar 

  9. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3(6):285–290

    CAS  PubMed  Google Scholar 

  10. Whiteside MD, Winsor GL, Laird MR, Brinkman FS (2013) OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis. Nucleic Acids Res 41(Database issue):D366–D376. https://doi.org/10.1093/nar/gks1241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I thank Chen Li for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Chandrasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chandrasekaran, S. (2019). Predicting Drug Interactions From Chemogenomics Using INDIGO. In: Ziegler, S., Waldmann, H. (eds) Systems Chemical Biology. Methods in Molecular Biology, vol 1888. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8891-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8891-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8890-7

  • Online ISBN: 978-1-4939-8891-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics