Skip to main content

Noninvasive Approaches to Prenatal Diagnosis: Historical Perspective and Future Directions

  • Protocol
  • First Online:
Prenatal Diagnosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1885))

Abstract

The field of prenatal screening and diagnosis has undergone enormous progress over the past four decades. Most of this period has been characterized by gradual improvements in the technical and public health aspects of prenatal screening for Down syndrome. Compared to the direct analysis of fetal cells from amniocentesis or chorionic villus sampling, noninvasive approaches using maternal blood or ultrasound have the great advantage of posing no risk of miscarriage to the pregnancy. Recent advances in molecular genetics and DNA sequencing have revolutionized both the accuracy and the range of noninvasive testing for genetic abnormalities using cell-free DNA in maternal plasma. Many of these advances have already been incorporated into clinical care, including diagnosis of fetal blood group and aneuploidy screening. The accelerated pace of these recent developments is creating not just technical and logistical challenges, but is also magnifying the ethical and public policy issues traditionally associated with this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valenti C, Schutta EJ, Kehaty T (1968) Prenatal diagnosis of Down’s syndrome. Lancet 2:220

    Article  CAS  Google Scholar 

  2. Tabor A, Alfirevic Z (2010) Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther 27:1–7. https://doi.org/10.1159/000271995

    Article  PubMed  Google Scholar 

  3. Nicolaides KH (2004) First trimester diagnosis of chromosomal defects. In: The 11–13+6 week scan. Fetal Medicine Foundation, London

    Google Scholar 

  4. de Graaf G, Haveman M, Hochstenbach R et al (2011) Changes in yearly birth prevalence rates of children with Down syndrome in the period 1986-2007 in The Netherlands. J Intellect Disabil Res 55:462–473. https://doi.org/10.1111/j.1365-2788.2011.01398.x

    Article  PubMed  Google Scholar 

  5. Cheffins T, Chan A, Haan EA et al (2000) The impact of maternal serum screening on the birth prevalence of Down’s syndrome and the use of amniocentesis and chorionic villus sampling in South Australia. BJOG 107:1453–1459

    Article  CAS  Google Scholar 

  6. Wald NJ, Cuckle H, Brock JH et al (1977) Maternal serum-alpha-fetoprotein measurement in antenatal screening for anencephaly and spina bifida in early pregnancy. Report of U.K. collaborative study on alpha-fetoprotein in relation to neural-tube defects. Lancet 1:1323–1332

    CAS  PubMed  Google Scholar 

  7. Merkatz IR, Nitowsky HM, Macri JN et al (1984) An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am J Obstet Gynecol 148:886–894

    Article  CAS  Google Scholar 

  8. Cuckle HS, Wald NJ, Lindenbaum RH (1984) Maternal serum alpha-fetoprotein measurement: a screening test for Down syndrome. Lancet 1:926–929

    Article  CAS  Google Scholar 

  9. Bogart MH, Pandian MR, Jones OW (1987) Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat Diagn 7:623–630

    Article  CAS  Google Scholar 

  10. Canick JA, Knight GJ, Palomaki GE et al (1988) Low second trimester maternal serum unconjugated oestriol in pregnancies with Down’s syndrome. Br J Obstet Gynaecol 95:330–333

    Article  CAS  Google Scholar 

  11. Wald NJ, Cuckle HS, Densem JW et al (1988) Maternal serum screening for Down’s syndrome in early pregnancy. BMJ 297:883–887

    Article  CAS  Google Scholar 

  12. Wald NJ, Rodeck C, Hackshaw AK et al (2003) First and second trimester antenatal screening for Down’s syndrome: the results of the serum, urine and ultrasound screening study (SURUSS). J Med Screen 10:56–104

    CAS  PubMed  Google Scholar 

  13. Malone FD, Canick JA, Ball RH et al (2005) First-trimester or second-trimester screening, or both, for Down’s syndrome. N Engl J Med 353:2001–2011. https://doi.org/10.1056/NEJMoa043693

    Article  CAS  PubMed  Google Scholar 

  14. Bianchi DW, Crombleholme TM, D'Alton ME et al (2010) Fetology, 2nd edn. McGraw-Hill, New York, NY

    Google Scholar 

  15. Ewigman BG, Crane JP, Frigoletto FD et al (1993) Effect of prenatal ultrasound screening on perinatal outcome. RADIUS Study Group. N Engl J Med 329:821–827. https://doi.org/10.1056/NEJM199309163291201

    Article  CAS  PubMed  Google Scholar 

  16. Benacerraf BR (1996) Use of sonographic markers to determine the risk of Down syndrome in second-trimester fetuses. Radiology 201:619–620. https://doi.org/10.1148/radiology.201.3.8939206

    Article  CAS  PubMed  Google Scholar 

  17. Agathokleous M, Chaveeva P, Poon LC et al (2013) Meta-analysis of second-trimester markers for trisomy 21. Ultrasound Obstet Gynecol 41:247–261. https://doi.org/10.1002/uog.12364

    Article  CAS  PubMed  Google Scholar 

  18. Odibo AO, Ghidini A (2014) Role of the second-trimester ‘genetic sonogram’ for Down syndrome screen in the era of first-trimester screening and non-invasive prenatal testing. Prenat Diagn 34:511–517. https://doi.org/10.1002/pd.4329

    Article  PubMed  Google Scholar 

  19. Nicolaides KH, Azar G, Snijders RJ et al (1992) Fetal nuchal oedema: associated malformations and chromosomal defects. Fetal Diagn Ther 7:123–131

    Article  CAS  Google Scholar 

  20. Snijders RJ, Noble P, Sebire N et al (1998) UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14 weeks of gestation. Lancet 352:343–346

    Article  CAS  Google Scholar 

  21. Cicero S, Avgidou K, Rembouskos G et al (2006) Nasal bone in first-trimester screening for trisomy 21. Am J Obstet Gynecol 195:109–114. https://doi.org/10.1016/j.ajog.2005.12.057

    Article  CAS  PubMed  Google Scholar 

  22. Maiz N, Valencia C, Emmanuel EE et al (2008) Screening for adverse pregnancy outcome by ductus venosus doppler at 11-13+6 weeks of gestation. Obstet Gynecol 112:598–605. https://doi.org/10.1097/AOG.0b013e3181834608

    Article  PubMed  Google Scholar 

  23. Kagan KO, Valencia C, Livanos P et al (2009) Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and turner syndrome at 11+0 to 13+6 weeks of gestation. Ultrasound Obstet Gynecol 33:18–22. https://doi.org/10.1002/uog.6264

    Article  CAS  PubMed  Google Scholar 

  24. Nicolaides KH (2011) Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn 31:7–15. https://doi.org/10.1002/pd.2637

    Article  PubMed  Google Scholar 

  25. Malone FD (2005) Nuchal translucency-based Down syndrome screening: barriers to implementation. Semin Perinatol 29:272–276. https://doi.org/10.1053/j.semperi.2005.05.002

    Article  PubMed  Google Scholar 

  26. Cuckle H, Benn P, Wright D (2005) Down syndrome screening in the first and/or second trimester: model predicted performance using meta-analysis parameters. Semin Perinatol 29:252–257. https://doi.org/10.1053/j.semperi.2005.05.004

    Article  PubMed  Google Scholar 

  27. Schmorl CG (1893) Pathologisch-Anatomische Untersuchungen uber Puerperal Eklampsie [Pathological-anatomical explorations on puerperal eclampsia]. Verlag FCW Vogel, Leipzig

    Google Scholar 

  28. Walknowska J, Conte FA, Grumbach MM (1969) Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet 1:1119–1122

    Article  CAS  Google Scholar 

  29. Bianchi DW, Flint AF, Pizzimenti MF et al (1990) Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci U S A 87:3279–3283

    Article  CAS  Google Scholar 

  30. Bianchi DW, Zickwolf GK, Weil GJ et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 93:705–708

    Article  CAS  Google Scholar 

  31. Busch J, Huber P, Pfluger E et al (1994) Enrichment of fetal cells from maternal blood by high gradient magnetic cell sorting (double MACS) for PCR-based genetic analysis. Prenat Diagn 14:1129–1140

    Article  CAS  Google Scholar 

  32. Chen H, Griffin DK, Jestice K et al (1998) Evaluating the culture of fetal erythroblasts from maternal blood for non-invasive prenatal diagnosis. Prenat Diagn 18:883–892

    Article  CAS  Google Scholar 

  33. Bianchi DW, Simpson JL, Jackson LG et al (2002) Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn 22:609–615. https://doi.org/10.1002/pd.347

    Article  CAS  PubMed  Google Scholar 

  34. Huang Z, Fong CY, Gauthaman K et al (2011) Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child. J Cell Biochem 112:1475–1485. https://doi.org/10.1002/jcb.23084

    Article  CAS  PubMed  Google Scholar 

  35. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487. https://doi.org/10.1016/S0140-6736(97)02174-0

    Article  CAS  Google Scholar 

  36. Alberry M, Maddocks D, Jones M et al (2007) Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn 27:415–418. https://doi.org/10.1002/pd.1700

    Article  CAS  PubMed  Google Scholar 

  37. Gupta AK, Holzgreve W, Huppertz B et al (2004) Detection of fetal DNA and RNA in placenta-derived syncytiotrophoblast microparticles generated in vitro. Clin Chem 50:2187–2190. https://doi.org/10.1373/clinchem.2004.040196

    Article  CAS  PubMed  Google Scholar 

  38. Masuzaki H, Miura K, Yoshiura KI et al (2004) Detection of cell free placental DNA in maternal plasma: direct evidence from three cases of confined placental mosaicism. J Med Genet 41:289–292

    Article  CAS  Google Scholar 

  39. Guibert J, Benachi A, Grebille AG et al (2003) Kinetics of SRY gene appearance in maternal serum: detection by real time PCR in early pregnancy after assisted reproductive technique. Hum Reprod 18:1733–1736

    Article  CAS  Google Scholar 

  40. Lo YM, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224. https://doi.org/10.1086/302205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hui L, Vaughan JI, Nelson M (2008) Effect of labor on postpartum clearance of cell-free fetal DNA from the maternal circulation. Prenat Diagn 28:304–308. https://doi.org/10.1002/pd.1975

    Article  CAS  PubMed  Google Scholar 

  42. Rusterholz C, Messerli M, Hoesli I et al (2011) Placental microparticles, DNA, and RNA in preeclampsia. Hypertens Pregnancy 30:364–375. https://doi.org/10.3109/10641951003599571

    Article  CAS  PubMed  Google Scholar 

  43. Sifakis S, Zaravinos A, Maiz N et al (2009) First-trimester maternal plasma cell-free fetal DNA and preeclampsia. Am J Obstet Gynecol 201(472):e471–e477. https://doi.org/10.1016/j.ajog.2009.05.025

    Article  CAS  Google Scholar 

  44. Caramelli E, Rizzo N, Concu M et al (2003) Cell-free fetal DNA concentration in plasma of patients with abnormal uterine artery doppler waveform and intrauterine growth restriction—a pilot study. Prenat Diagn 23:367–371. https://doi.org/10.1002/pd.596

    Article  PubMed  Google Scholar 

  45. Hahn S, Rusterholz C, Hosli I et al (2011) Cell-free nucleic acids as potential markers for preeclampsia. Placenta 32(Suppl):S17–S20. https://doi.org/10.1016/j.placenta.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  46. Chim SS, Tong YK, Chiu RW et al (2005) Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci U S A 102:14753–14758. https://doi.org/10.1073/pnas.0503335102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan KC, Ding C, Gerovassili A et al (2006) Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of non-invasive prenatal diagnosis. Clin Chem 52:2211–2218. https://doi.org/10.1373/clinchem.2006.074997

    Article  CAS  PubMed  Google Scholar 

  48. Tsui NB, Lo YM (2008) A microarray approach for systematic identification of placental-derived RNA markers in maternal plasma. Methods Mol Biol 444:275–289. https://doi.org/10.1007/978-1-59745-066-9_22

    Article  CAS  PubMed  Google Scholar 

  49. Pang WW, Tsui MH, Sahota D et al (2009) A strategy for identifying circulating placental RNA markers for fetal growth assessment. Prenat Diagn 29:495–504. https://doi.org/10.1002/pd.2230

    Article  CAS  PubMed  Google Scholar 

  50. Whitehead CL, Tong S (2014) Measuring hypoxia-induced RNA in maternal blood: a new way to identify critically hypoxic fetuses in utero? Expert Rev Mol Diagn 14:509–511. https://doi.org/10.1586/14737159.2014.915749

    Article  CAS  PubMed  Google Scholar 

  51. Phillippe M (2014) Cell-free fetal DNA—a trigger for parturition. N Engl J Med 370:2534–2536. https://doi.org/10.1056/NEJMcibr1404324

    Article  CAS  PubMed  Google Scholar 

  52. Devaney SA, Palomaki GE, Scott JA et al (2011) Non-invasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA 306:627–636. https://doi.org/10.1001/jama.2011.1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hill M, Finning K, Martin P et al (2011) Non-invasive prenatal determination of fetal sex: translating research into clinical practice. Clin Genet 80:68–75. https://doi.org/10.1111/j.1399-0004.2010.01533.x

    Article  CAS  PubMed  Google Scholar 

  54. Finning KM, Martin PG, Soothill PW et al (2002) Prediction of fetal D status from maternal plasma: introduction of a new non-invasive fetal RHD genotyping service. Transfusion 42:1079–1085

    Article  CAS  Google Scholar 

  55. Chitty LS, van der Schoot CE, Hahn S et al (2008) SAFE—the special non-invasive advances in fetal and neonatal evaluation network: aims and achievements. Prenat Diagn 28:83–88. https://doi.org/10.1002/pd.1929

    Article  PubMed  Google Scholar 

  56. Clausen FB, Steffensen R, Christiansen M et al (2014) Routine non-invasive prenatal screening for fetal RHD in plasma of RhD-negative pregnant women-2 years of screening experience from Denmark. Prenat Diagn 34(10):1000–1005. https://doi.org/10.1002/pd.4419

    Article  PubMed  Google Scholar 

  57. Traeger-Synodinos J, Vrettou C, Kanavakis E (2011) Prenatal, non-invasive and preimplantation genetic diagnosis of inherited disorders: hemoglobinopathies. Expert Rev Mol Diagn 11:299–312. https://doi.org/10.1586/erm.11.7

    Article  PubMed  Google Scholar 

  58. Scheffer PG, Ait Soussan A, Verhagen OJ et al (2011) Non-invasive fetal genotyping of human platelet antigen-1a. BJOG 118:1392–1395. https://doi.org/10.1111/j.1471-0528.2011.03039.x

    Article  CAS  PubMed  Google Scholar 

  59. Barrett AN, Chitty LS (2014) Developing non-invasive diagnosis for single-gene disorders: the role of digital PCR. Methods Mol Biol 1160:215–228. https://doi.org/10.1007/978-1-4939-0733-5_17

    Article  CAS  PubMed  Google Scholar 

  60. Lo YM, Chiu RW (2010) Non-invasive approaches to prenatal diagnosis of hemoglobinopathies using fetal DNA in maternal plasma. Hematol Oncol Clin North Am 24:1179–1186. https://doi.org/10.1016/j.hoc.2010.08.007

    Article  PubMed  Google Scholar 

  61. New MI, Tong YK, Yuen T et al (2014) Non-invasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab 99:E1022–E1030. https://doi.org/10.1210/jc.2014-1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ashoor G, Syngelaki A, Poon LC et al (2013) Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 41:26–32. https://doi.org/10.1002/uog.12331

    Article  CAS  PubMed  Google Scholar 

  63. Chiu RW, Akolekar R, Zheng YW et al (2011) Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 342:c7401. https://doi.org/10.1136/bmj.c7401

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bianchi DW, Platt LD, Goldberg JD et al (2012) Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet Gynecol 119:890–901. https://doi.org/10.1097/AOG.0b013e31824fb482

    Article  CAS  PubMed  Google Scholar 

  65. Jiang F, Ren J, Chen F et al (2012) Non-invasive fetal trisomy (NIFTY) test: an advanced non-invasive prenatal diagnosis methodology for fetal autosomal and sex chromosomal aneuploidies. BMC Med Genet 5:57. https://doi.org/10.1186/1755-8794-5-57

    Article  CAS  Google Scholar 

  66. Ehrich M, Deciu C, Zwiefelhofer T et al (2011) Non-invasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 204(205):e201–e211. https://doi.org/10.1016/j.ajog.2010.12.060

    Article  CAS  Google Scholar 

  67. Palomaki GE, Kloza EM, Lambert-Messerlian GM et al (2011) DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 13:913–920. https://doi.org/10.1097/GIM.0b013e3182368a0e

    Article  CAS  PubMed  Google Scholar 

  68. Lau TK, Chen F, Pan X et al (2012) Non-invasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing. J Matern Fetal Neonatal Med 25:1370–1374. https://doi.org/10.3109/14767058.2011.635730

    Article  CAS  PubMed  Google Scholar 

  69. Ashoor G, Syngelaki A, Wagner M et al (2012) Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am J Obstet Gynecol 206(322):e321–e325. https://doi.org/10.1016/j.ajog.2012.01.029

    Article  CAS  Google Scholar 

  70. Sparks AB, Wang ET, Struble CA et al (2012) Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat Diagn 32:3–9. https://doi.org/10.1002/pd.2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sparks AB, Struble CA, Wang ET et al (2012) Non-invasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol 206:319e311–319e319. https://doi.org/10.1016/j.ajog.2012.01.030

    Article  CAS  Google Scholar 

  72. Norton ME, Brar H, Weiss J et al (2012) Non-invasive chromosomal evaluation (NICE) study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. Am J Obstet Gynecol 207(137):e131–e138. https://doi.org/10.1016/j.ajog.2012.05.021

    Article  Google Scholar 

  73. Zimmermann B, Hill M, Gemelos G et al (2012) Non-invasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci. Prenat Diagn 32:1233–1241. https://doi.org/10.1002/pd.3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nicolaides KH, Syngelaki A, Gil M et al (2013) Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat Diagn 33:575–579. https://doi.org/10.1002/pd.4103

    Article  CAS  PubMed  Google Scholar 

  75. Lau TK, Cheung SW, Lo PS et al (2014) Non-invasive prenatal testing for fetal chromosomal abnormalities by low-coverage whole-genome sequencing of maternal plasma DNA: review of 1982 consecutive cases in a single center. Ultrasound Obstet Gynecol 43:254–264. https://doi.org/10.1002/uog.13277

    Article  CAS  PubMed  Google Scholar 

  76. Srinivasan A, Bianchi DW, Huang H et al (2013) Non-invasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am J Hum Genet 92:167–176. https://doi.org/10.1016/j.ajhg.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mersy E, Smits LJ, van Winden LA et al (2013) Non-invasive detection of fetal trisomy 21: systematic review and report of quality and outcomes of diagnostic accuracy studies performed between 1997 and 2012. Hum Reprod Update 19:318–329. https://doi.org/10.1093/humupd/dmt001

    Article  CAS  PubMed  Google Scholar 

  78. Benn P, Borell A, Chiu R et al (2013) Position statement from the Aneuploidy Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn 33:622–629. https://doi.org/10.1002/pd.4139

    Article  PubMed  Google Scholar 

  79. American College of O, Gynecologists Committee on G (2012) Committee Opinion No. 545: Non-invasive prenatal testing for fetal aneuploidy. Obstet Gynecol 120:1532–1534. https://doi.org/10.1097/01.AOG.0000423819.85283.f4

    Article  Google Scholar 

  80. Ohno M, Caughey A (2013) The role of non-invasive prenatal testing as a diagnostic versus a screening tool—a cost-effectiveness analysis. Prenat Diagn 33:630–635. https://doi.org/10.1002/pd.4156

    Article  PubMed  Google Scholar 

  81. Nicolaides KH, Syngelaki A, Ashoor G et al (2012) Non-invasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol 207(374):e371–e376. https://doi.org/10.1016/j.ajog.2012.08.033

    Article  Google Scholar 

  82. Dan S, Wang W, Ren J et al (2012) Clinical application of massively parallel sequencing-based prenatal non-invasive fetal trisomy test for trisomies 21 and 18 in 11,105 pregnancies with mixed risk factors. Prenat Diagn 32:1225–1232. https://doi.org/10.1002/pd.4002

    Article  PubMed  Google Scholar 

  83. Gil MM, Quezada MS, Bregant B et al (2013) Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies. Ultrasound Obstet Gynecol 42:34–40. https://doi.org/10.1002/uog.12504

    Article  CAS  PubMed  Google Scholar 

  84. Bianchi DW, Parker RL, Wentworth J et al (2014) DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med 370:799–808. https://doi.org/10.1056/NEJMoa1311037

    Article  CAS  PubMed  Google Scholar 

  85. Bianchi DW, Wilkins-Haug L (2014) Integration of non-invasive DNA testing for aneuploidy into prenatal care: what has happened since the rubber met the road? Clin Chem 60:78–87. https://doi.org/10.1373/clinchem.2013.202663

    Article  CAS  PubMed  Google Scholar 

  86. Hui L, Hyett J (2013) Non-invasive prenatal testing for trisomy 21: challenges for implementation in Australia. Aust N Z J Obstet Gynaecol 53:416–424. https://doi.org/10.1111/ajo.12117

    Article  PubMed  Google Scholar 

  87. Bulletins ACoP (2007) ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol 109:217–227

    Article  Google Scholar 

  88. Huang T, Watt H, Wald N et al (1998) Birth prevalence of Down’s syndrome in England and Wales 1990 to 1997. J Med Screen 5:213–214

    Article  CAS  Google Scholar 

  89. Lai FM, Woo BH, Tan KH et al (2002) Birth prevalence of Down syndrome in Singapore from 1993 to 1998. Singap Med J 43:070–076

    CAS  Google Scholar 

  90. Samango-Sprouse C, Banjevic M, Ryan A et al (2013) SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat Diagn 33:643–649. https://doi.org/10.1002/pd.4159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peters D, Chu T, Yatsenko SA et al (2011) Non-invasive prenatal diagnosis of a fetal microdeletion syndrome. N Engl J Med 365:1847–1848. https://doi.org/10.1056/NEJMc1106975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jensen TJ, Dzakula Z, Deciu C et al (2012) Detection of microdeletion 22q11.2 in a fetus by next-generation sequencing of maternal plasma. Clin Chem 58:1148–1151. https://doi.org/10.1373/clinchem.2011.180794

    Article  CAS  PubMed  Google Scholar 

  93. Yu SC, Jiang P, Choy KW et al (2013) Non-invasive prenatal molecular karyotyping from maternal plasma. PLoS One 8:e60968. https://doi.org/10.1371/journal.pone.0060968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fan HC, Gu W, Wang J et al (2012) Non-invasive prenatal measurement of the fetal genome. Nature 487:320–324. https://doi.org/10.1038/nature11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kitzman JO, Snyder MW, Ventura M et al (2012) Non-invasive whole-genome sequencing of a human fetus. Sci Transl Med 4:137ra176. https://doi.org/10.1126/scitranslmed.3004323

    Article  CAS  Google Scholar 

  96. Lo YM, Chan KC, Sun H et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2:61ra91. https://doi.org/10.1126/scitranslmed.3001720

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Hui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hui, L. (2019). Noninvasive Approaches to Prenatal Diagnosis: Historical Perspective and Future Directions. In: Levy, B. (eds) Prenatal Diagnosis. Methods in Molecular Biology, vol 1885. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8889-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8889-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8887-7

  • Online ISBN: 978-1-4939-8889-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics