Skip to main content

Generation of CAR-T Cells for Cancer Immunotherapy

  • Protocol
  • First Online:
Cancer Immunosurveillance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1884))

Abstract

T cells engineered with chimeric antigen receptors (CARs) are emerging as powerful cancer immunotherapies. Remarkable efficacies have been demonstrated in treating B-cell malignancies with CAR-T cells, leading to the FDA’s first approval of gene therapy. Currently, numerous clinical trials for hematological malignancies and solid tumors are underway worldwide. Production of CAR-T cells with proper qualities is essential for CAR-T success in vivo. Here we detail optimized protocols for the generation of CAR-T cells for preclinical studies using lentiviral gene transfer, expansion of CAR-T cells in culture, detection of CAR expression, and evaluation of CAR-T cellular cytotoxicity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadelian M, Brentjens R, Rivière I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398

    Article  Google Scholar 

  2. Dotti G, Gottschalk S, Savoldo B et al (2014) Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 257:107–126

    Article  CAS  Google Scholar 

  3. Chmielewski M, Hombach AA, Abken H (2013) Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol 4:371

    Article  Google Scholar 

  4. Jorritsma A, Gomez-Eerland R, Dokter M et al (2007) Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 110:3564–3572

    Article  CAS  Google Scholar 

  5. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  Google Scholar 

  6. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra25

    Article  Google Scholar 

  7. Schuster SJ, Svoboda J, Nasta S et al (2015) Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. J Clin Oncol 33(suppl 15):8516

    Google Scholar 

  8. Porter DL, Hwang WT, Frey NV et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7:303ra139

    Article  Google Scholar 

  9. Maus MV, June C (2016) Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 22:1875–1884

    Article  CAS  Google Scholar 

  10. Jackson HJ, Rafiq S, Brentjens RJ (2016) Driving CAR T-cells forward. Nat Rev Clin Oncol 13:370–383

    Article  CAS  Google Scholar 

  11. Suerth JD, Schambach A, Baum C (2012) Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 24:598–608

    Article  CAS  Google Scholar 

  12. Circosta P, Granziero L, Follenzi A et al (2009) T Cell Receptor (TCR) gene transfer with lentiviral vectors allows efficient redirection of tumor specificity in naive and memory T cells without prior stimulation of endogeouns TCR. Hum Gene Ther 20:1576–1588

    Article  CAS  Google Scholar 

  13. Cavalieri S, Cazzaniga S, Geuna M et al (2003) Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood 102:497–505

    Article  CAS  Google Scholar 

  14. Biffi A, Bartolomae CC, Cesana D et al (2011) Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 117:5332–5339

    Article  CAS  Google Scholar 

  15. Maiti SN, Huls H, Singh H et al (2013) Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother 36:112–123

    Article  CAS  Google Scholar 

  16. Kenderian SS, Ruella M, Shestova O et al (2015) CD33 specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 29:1637–1647

    Article  CAS  Google Scholar 

  17. Kochenderfer JN, Feldman SA, Zhao Y et al (2009) Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 32:689–702

    Article  CAS  Google Scholar 

  18. Kim JV, Latouche JB, Rivière I et al (2004) The ABCs of artificial antigen presentation. Nat Biotechnol 22:403–410

    Article  CAS  Google Scholar 

  19. Kochenderfer JN, Dudley ME, Kassim SH et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T-cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33:540–549

    Article  CAS  Google Scholar 

  20. Maus MV, Grupp SA, Porter DL et al (2014) Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123:2625–2635

    Article  CAS  Google Scholar 

  21. Zheng Z, Chinnasamy N, Morgan RA (2012) Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR) expression by flow cytometry. J Transl Med 10:29

    Article  CAS  Google Scholar 

  22. Jena B, Maiti S, Huls H et al (2013) Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials. PLoS One 8(3):e578388

    Article  Google Scholar 

  23. Berahovich R, Xu S, Zhou H (2017) FLAG-tagged CD19-specific CAR-T cells eliminate CD19-bearing solid tumor cells in vitro and in vivo. Front Biosci–Landmrk 22:1644–1654

    Article  Google Scholar 

  24. Irving BA, Weiss A (1991) The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64:891–901

    Article  CAS  Google Scholar 

  25. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vita Golubovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, Q. et al. (2019). Generation of CAR-T Cells for Cancer Immunotherapy. In: López-Soto, A., Folgueras, A. (eds) Cancer Immunosurveillance. Methods in Molecular Biology, vol 1884. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8885-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8885-3_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8884-6

  • Online ISBN: 978-1-4939-8885-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics