Skip to main content

Usage of Droplet Digital PCR (ddPCR) Assays for T Cell Quantification in Cancer

  • Protocol
  • First Online:
Cancer Immunosurveillance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1884))

Abstract

T cells fulfill a central role in cell-mediated immunity and can be found in the circulation and lymphoid organs upon maturation. For clinical applications, it can be important to quantify (infiltrated) T cells accurately in a variety of body fluids and tissues of benign, inflammatory, or malignant origin. For decades, flow cytometry and immunohistochemistry have been the accustomed methods to quantify T cells. Although these methods are widely used, they depend on the accessibility of T-cell epitopes and therefore require fresh, frozen, or fixated material of a certain quality. Whenever samples are low in quantity or quality, an accurate quantification can be impeded. By shifting the focus from epitopes to DNA, quantification of T cells remains achievable.

Mature T cells differ genetically from other cell types as a result of T-cell receptor (TCR) gene rearrangements. This genetic dissimilarity can be exploited to quantify the T-cell fraction in DNA specimens. Conventionally, multiplex PCR and droplet digital PCR (ddPCR), combined with deep-sequencing techniques, can be applied to determine T-cell content. However, these approaches typically target the whole TCR repertoire, thereby supplying additional information about TCR use. Considering this, a simple T-cell quantification, unwantedly, turns into a complex, expensive, and time-consuming procedure. We have developed two generic single duplex ddPCR assays as alternative methods to quantify T cells in a relatively simple, cheap, and fast manner by targeting sequences located between the Dδ2 and Dδ3 genes (TRD locus) and Dβ1 and Jβ1.1 genes (TRB locus). These specific TCR loci become deleted systematically early during lymphoid differentiation and therefore will serve as biomarkers for the quantification of mature T cells. Here, we describe a simple and sensitive ddPCR-based method to quantify T cells relatively fast, accurately and independently of the cellular context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lowes MA, Suarez-Farinas M, Krueger JG (2014) Immunology of psoriasis. Annu Rev Immunol 32:227–255

    Article  CAS  Google Scholar 

  2. Talmadge JE (2011) Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 21(2):131–138

    Article  CAS  Google Scholar 

  3. Fridman WH, Galon J, Pages F et al (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71(17):5601–5605

    Article  CAS  Google Scholar 

  4. Castaneda CA, Mittendorf E, Casavilca S et al (2016) Tumor infiltrating lymphocytes in triple negative breast cancer receiving neoadjuvant chemotherapy. World J Clinl Oncol 7(5):387–394

    Article  Google Scholar 

  5. Schatton T, Scolyer RA, Thompson JF et al (2014) Tumor-infiltrating lymphocytes and their significance in melanoma prognosis. Methods Mol Biol 1102:287–324

    Article  CAS  Google Scholar 

  6. Henricks LM, Schellens JH, Huitema AD et al (2015) The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat Rev 41(10):859–867

    Article  CAS  Google Scholar 

  7. Whiteside TL, Demaria S, Rodriguez-Ruiz ME et al (2016) Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res 22(8):1845–1855

    Article  CAS  Google Scholar 

  8. Wood B, Jevremovic D, Bene MC et al (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part V - assay performance criteria. Cytometry B Clin Cytom 84(5):315–323

    Article  Google Scholar 

  9. Walker RA (2006) Quantification of immunohistochemistry--issues concerning methods, utility and semiquantitative assessment I. Histopathology 49(4):406–410

    Article  CAS  Google Scholar 

  10. Ginaldi L, De Martinis M, D'Ostilio A et al (2001) Changes in the expression of surface receptors on lymphocyte subsets in the elderly: quantitative flow cytometric analysis. Am J Hematol 67(2):63–72

    Article  CAS  Google Scholar 

  11. Ginaldi L, Farahat N, Matutes E et al (1996) Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry. J Clin Pathol 49(7):539–544

    Article  CAS  Google Scholar 

  12. Ginaldi L, Matutes E, Farahat N et al (1996) Differential expression of CD3 and CD7 in T-cell malignancies: a quantitative study by flow cytometry. Br J Haematol 93(4):921–927

    Article  CAS  Google Scholar 

  13. Boonk SE, Zoutman WH, Marie-Cardine A et al (2016) Evaluation of immunophenotypic and molecular biomarkers for sezary syndrome using standard operating procedures: a multicenter study of 59 patients. J Invest Dermatol 136(7):1364–1372

    Article  CAS  Google Scholar 

  14. Kaufmann SH (1996) Gamma/delta and other unconventional T lymphocytes: what do they see and what do they do? Proc Natl Acad Sci U S A 93(6):2272–2279

    Article  CAS  Google Scholar 

  15. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334(6181):395–402

    Article  CAS  Google Scholar 

  16. Dik WA, Pike-Overzet K, Weerkamp F et al (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 201(11):1715–1723

    Article  CAS  Google Scholar 

  17. Zoutman WH, Nell RJ, Versluis M et al (2017) Accurate quantification of T cells by measuring loss of germline T-cell receptor loci with generic single duplex droplet digital PCR assays. J Mol Diagn 19(2):236–243

    Article  CAS  Google Scholar 

  18. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96(16):9236–9241

    Article  CAS  Google Scholar 

  19. Linnemann C, Mezzadra R, Schumacher TN (2014) TCR repertoires of intratumoral T-cell subsets. Immunol Rev 257(1):72–82

    Article  CAS  Google Scholar 

  20. Robins HS, Ericson NG, Guenthoer J et al (2013) Digital genomic quantification of tumor-infiltrating lymphocytes. Sci Transl Med 5(214):214ra169

    Article  Google Scholar 

  21. van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 17(12):2257–2317

    Article  Google Scholar 

  22. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  Google Scholar 

  23. Huggett JF, Foy CA, Benes V et al (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59(6):892–902

    Article  CAS  Google Scholar 

  24. Vermeer MH, van Doorn R, Dijkman R et al (2008) Novel and highly recurrent chromosomal alterations in Sezary syndrome. Cancer Res 68(8):2689–2698

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter A. van der Velden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zoutman, W.H., Nell, R.J., van der Velden, P.A. (2019). Usage of Droplet Digital PCR (ddPCR) Assays for T Cell Quantification in Cancer. In: López-Soto, A., Folgueras, A. (eds) Cancer Immunosurveillance. Methods in Molecular Biology, vol 1884. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8885-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8885-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8884-6

  • Online ISBN: 978-1-4939-8885-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics