Skip to main content

Unsupervised GRN Ensemble

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1883))

Abstract

Inferring gene regulatory networks from expression data is a very challenging problem that has raised the interest of the scientific community. Different algorithms have been proposed to try to solve this issue, but it has been shown that different methods have some particular biases and strengths, and none of them is the best across all types of data and datasets. As a result, the idea of aggregating various network inferences through a consensus mechanism naturally arises. In this chapter, a common framework to standardize already proposed consensus methods is presented, and based on this framework different proposals are introduced and analyzed in two different scenarios: Homogeneous and Heterogeneous. The first scenario reflects situations where the networks to be aggregated are rather similar because they are obtained with inference algorithms working on the same data, whereas the second scenario deals with very diverse networks because various sources of data are used to generate the individual networks. A procedure for combining multiple network inference algorithms is analyzed in a systematic way. The results show that there is a very significant difference between these two scenarios, and that the best way to combine networks in the Heterogeneous scenario is not the most commonly used. We show in particular that aggregation in the Heterogeneous scenario can be very beneficial if the individual networks are combined with our new proposed method ScaleLSum.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meyer PE, Kontos K, Lafitte F, Bontempi G (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol, pp 8–8

    Google Scholar 

  3. Meyer P, Kontos K, Bontempi G (2007) Biological network inference using redundancy analysis. In: Bioinformatics research and development, pp 16–27

    Google Scholar 

  4. Meyer PE, Marbach D, Roy S, Kellis M (2010) Information-theoretic inference of gene networks using backward elimination. In: BIOCOMP, pp 700–705

    Google Scholar 

  5. Altay G, Emmert-Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 4(1):132

    Article  PubMed  PubMed Central  Google Scholar 

  6. Altay G, Emmert-Streib F (2010) Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 26(14): 1738–1744

    Article  CAS  PubMed  Google Scholar 

  7. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Kellis M, Collins JJ, Stolovitzky G et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA (2013) Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief Bioinform p bbt034

    Google Scholar 

  9. Bellot P, Olsen C, Salembier P, Oliveras-Vergés A, Meyer PE (2015) Netbenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference. BMC Bioinf 16(1):312

    Article  Google Scholar 

  10. Hase T, Ghosh S, Yamanaka R, Kitano H (2013) Harnessing diversity towards the reconstructing of large scale gene regulatory networks. PLoS Comput Biol 9(11):e1003361

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci 107(14):6286–6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas S, Marbach D, Floreano D (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16):2263–2270

    Article  Google Scholar 

  13. Krishnan A, Giuliani A, Tomita M (2007) Indeterminacy of reverse engineering of gene regulatory networks: the curse of gene elasticity. PLoS One 2(6):e562

    Article  PubMed  PubMed Central  Google Scholar 

  14. Emmert-Streib F, Glazko GV, Altay G, Simoes RdM (2012) Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front Genet 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marbach D, Roy S, Ay F, Meyer PE, Candeias R, Kahveci T, Bristow CA, Kellis M (2012) Predictive regulatory models in drosophilamelanogaster by integrative inference of transcriptional networks. Genome Res 22(7): 1334–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellot P, Meyer PE (2014) Efficient combination of pairwise feature networks. In: NCW2014 ECML

    Google Scholar 

  17. Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, O’Shea EK (2008) Structure and function of a transcriptional network activated by the MAPK Hog1. Nat Genet 40(11):1300–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Microbiol 8(10):717–729

    PubMed  Google Scholar 

  19. Gama-Castro S, Salgado H, Peralta-Gil M (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res 39:D98–D105

    Article  CAS  PubMed  Google Scholar 

  20. Salgado H, Martínez-Flores I, Lopez-Fuentes A (2012) Extracting regulatory networks of Escherichia coli from RegulonDB. Methods Mol Biol 804:179–195

    Article  CAS  PubMed  Google Scholar 

  21. Faith J, Driscoll M, Fusaro V (2008) Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res 36:D866–D870

    Article  CAS  PubMed  Google Scholar 

  22. Fong S, Joyce A, Palsson B (2005) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15:1365–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sangurdekar D, Srienc F (2006) A classification based framework for quantitative description of large-scale microarray data. Genome Biol 7:R32

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xiao G, Wang X, Khodursky A (2011) Modeling three-dimensional chromosome structures using gene expression data. J Am Stat Assoc 106:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bellot P (2017) Study of gene regulatory networks inference methods from gene expression data. PhD thesis, Universitat Politècnica de Catalunya

    Google Scholar 

  26. Halfon M, Gallo S, Bergman C (2008) REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila. Nucleic Acids Res 36: D594–D598

    Article  CAS  PubMed  Google Scholar 

  27. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PloS One 5(9):e12776

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pham NC, Haibe-Kains B, Bellot P, Bontempi G, Meyer PE (2016) Study of meta-analysis strategies for network inference using information-theoretic approaches. In: Biological knowledge discovery and data mining

    Google Scholar 

  29. Meyer PE, Olsen C, Bontempi G (2011) Transcriptional network inference based on information theory. In: Applied statistics for network biology: methods in systems biology. Wiley-Blackwell, Weinheim, pp 67–89

    Chapter  Google Scholar 

  30. Ruyssinck J, Demeester P, Dhaene T, Saeys Y (2016) Netter: re-ranking gene network inference predictions using structural network properties. BMC Bioinf 17(1):76

    Article  Google Scholar 

  31. Pržulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183

    Article  PubMed  Google Scholar 

  32. Hwang CR (1988) Simulated annealing: theory and applications. Acta Appl Math 12: 108–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Bellot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bellot, P., Salembier, P., Pham, N.C., Meyer, P.E. (2019). Unsupervised GRN Ensemble. In: Sanguinetti, G., Huynh-Thu, V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8882-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8882-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8881-5

  • Online ISBN: 978-1-4939-8882-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics