Skip to main content

Inferring Gene Regulatory Networks from Multiple Datasets

  • Protocol
  • First Online:
Gene Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1883))

Abstract

Gaussian process dynamical systems (GPDS) represent Bayesian nonparametric approaches to inference of nonlinear dynamical systems, and provide a principled framework for the learning of biological networks from multiple perturbed time series measurements of gene or protein expression. Such approaches are able to capture the full richness of complex ODE models, and can be scaled for inference in moderately large systems containing hundreds of genes. Related hierarchical approaches allow for inference from multiple datasets in which the underlying generative networks are assumed to have been rewired, either by context-dependent changes in network structure, evolutionary processes, or synthetic manipulation. These approaches can also be used to leverage experimentally determined network structures from one species into another where the network structure is unknown. Collectively, these methods provide a comprehensive and flexible platform for inference from a diverse range of data, with applications in systems and synthetic biology, as well as spatiotemporal modelling of embryo development. In this chapter we provide an overview of GPDS approaches and highlight their applications in the biological sciences, with accompanying tutorials available as a Jupyter notebook from https://github.com/cap76/GPDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci 99(20):12841–12846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  PubMed  Google Scholar 

  3. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  CAS  PubMed  Google Scholar 

  4. Zak DE, Gonye GE, Schwaber JS, Doyle FJ (2003) Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res 13(11):2396–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Locke J, Millar A, Turner M (2005) Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol 234(3):383–393

    Article  CAS  PubMed  Google Scholar 

  6. Pokhilko A, Mas P, Millar AJ (2013) Modelling the widespread effects of toc1 signalling on the plant circadian clock and its outputs. BMC Syst Biol 7(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fogelmark K, Troein C (2014) Rethinking transcriptional activation in the Arabidopsis circadian clock. PLoS Comput Biol 10(7):e1003705

    Article  PubMed  PubMed Central  Google Scholar 

  8. Domijan M, Rand DA (2015) Using constraints and their value for optimization of large ode systems. J R Soc Interface 12(104):20141303

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D (2016) A compact model for the complex plant circadian clock. Front Plant Sci 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, Ryan S, Spiller DG, Unitt JF, Broomhead DS et al (2009) Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science 324(5924):242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Paszek P, Horton CA, Yue H, White MR, Kell DB, Muldoon MR, Broomhead DS (2012) A systematic survey of the response of a model nf-κb signalling pathway to tnfα stimulation. J Theor Biol 297:137–147

    Article  CAS  PubMed  Google Scholar 

  12. Jonak K, Kurpas M, Szoltysek K, Janus P, Abramowicz A, Puszynski K (2016) A novel mathematical model of atm/p53/nf-κ b pathways points to the importance of the DDR switch-off mechanisms. BMC Syst Biol 10(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  13. Calderhead B, Girolami M, Lawrence ND (2009) Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. In: Advances in neural information processing systems, pp 217–224

    Google Scholar 

  14. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6(31):187–202

    Article  PubMed  Google Scholar 

  15. Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MP (2014) A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nat Protoc 9(2):439–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5(4):251–261

    Article  CAS  PubMed  Google Scholar 

  17. Hjort N, Holmes C, Müller P, Walker S (eds) (2010) Bayesian nonparametrics. Cambridge University Press, Cambridge

    Google Scholar 

  18. Murray-Smith R, Johansen TA, Shorten R (1999) On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures. In: 1999 European control conference (ECC). IEEE, Piscataway, pp 3569–3574

    Google Scholar 

  19. Murray-Smith R, Girard A (2001) Gaussian process priors with ARMA noise models. In: Irish signals and systems conference, Maynooth, pp 147–152

    Google Scholar 

  20. Girard A, Rasmussen CE, Candela JQ, Murray-Smith R (2003) Gaussian process priors with uncertain inputs application to multiple-step ahead time series forecasting. In: Advances in neural information processing systems, pp 545–552

    Google Scholar 

  21. Leithead W, Solak E, Leith D (2003) Direct identification of nonlinear structure using Gaussian process prior models. In: European control conference (ECC), 2003. IEEE, Piscataway, pp 2565–2570

    Chapter  Google Scholar 

  22. Sbarbaro D, Murray-Smith R (2005) Self-tuning control of non-linear systems using Gaussian process prior models. In: Switching and learning in feedback systems. Springer, Berlin, pp 140–157

    Chapter  Google Scholar 

  23. Cunningham J, Ghahramani Z, Rasmussen CE (2012) Gaussian processes for time-marked time-series data. In: International conference on artificial intelligence and statistics, pp 255–263

    Google Scholar 

  24. Frigola R, Lindsten F, Schön TB, Rasmussen CE (2014) Identification of Gaussian process state-space models with particle stochastic approximation EM. IFAC Proc Vol 47(3):4097–4102

    Article  Google Scholar 

  25. Frigola R, Chen Y, Rasmussen CE (2014) Variational Gaussian process state-space models. In: Advances in neural information processing systems, pp 3680–3688

    Google Scholar 

  26. Klemm S et al (2008) Causal structure identification in nonlinear dynamical systems. Department of Engineering, University of Cambridge, Cambridge

    Google Scholar 

  27. Penfold CA, Wild DL (2011) How to infer gene networks from expression profiles, revisited. Interface Focus 1(6):857–870

    Article  PubMed  PubMed Central  Google Scholar 

  28. Penfold CA, Millar JB, Wild DL (2015) Inferring orthologous gene regulatory networks using interspecies data fusion. Bioinformatics 31(12):i97–i105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning, vol 2. MIT Press, Cambridge

    Google Scholar 

  30. Lloyd JR, Duvenaud D, Grosse R, Tenenbaum JB, Ghahramani Z (2014) Automatic construction and natural-language description of nonparametric regression models. Preprint. arXiv:14024304

    Google Scholar 

  31. Yang J, Penfold CA, Grant MR, Rattray M (2016) Inferring the perturbation time from biological time course data. Bioinformatics 32:2956–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Penfold CA, Sybirna A, Reid J, Huang Y, Wernisch L, Grant M, Ghahramani Z, Surani MA (2017) Nonparametric Bayesian inference of transcriptional branching and recombination identifies regulators of early human germ cell development. bioRxiv p 167684

    Google Scholar 

  33. Penfold CA, Sybirna A, Reid J, Huang Y, Wernisch L, Ghahramani Z, Grant M, Surani MA (2018) Branch-recombinant Gaussian processes for analysis of perturbations in biological time series. Bioinformatics, 34(17):i1005–i1013

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boukouvalas, Alexis, Hensman J, Rattray M (2018) BGP: identifying gene-specific branching dynamics from single-cell data with a branching Gaussian process. Genome biology 19.1:65

    Article  PubMed  PubMed Central  Google Scholar 

  35. Äijö T, Lähdesmäki H (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25(22):2937– 2944

    Article  PubMed  Google Scholar 

  36. Solak E, Murray-Smith R, Leithead WE, Leith DJ, Rasmussen CE (2003) Derivative observations in Gaussian process models of dynamic systems. In: Advances in neural information processing systems, pp 1057–1064

    Google Scholar 

  37. Penfold CA, Shifaz A, Brown PE, Nicholson A, Wild DL (2015) Csi: a nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data. Stat Appl Genet Mol Biol 14(3):307–310

    Article  CAS  PubMed  Google Scholar 

  38. Polanski K, Gao B, Mason SA, Brown P, Ott S, Denby KJ, Wild DL (2017) Bringing numerous methods for expression and promoter analysis to a public cloud computing service. Bioinformatics 1:3

    Google Scholar 

  39. Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C, Hacohen N, Friedman N et al (2011) Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 29(5):436–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li L, Nelson C, Fenske R, Trösch J, Pružinská A, Millar AH, Huang S (2017) Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of lon1 in mitochondrial protein homeostasis. Plant J 89(3):458–471

    Article  CAS  PubMed  Google Scholar 

  41. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541

    Article  PubMed  Google Scholar 

  42. Wang P, Rodriguez RT, Wang J, Ghodasara A, Kim SK (2011) Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8(3):335–346

    Article  PubMed  PubMed Central  Google Scholar 

  43. Viotti M, Nowotschin S, Hadjantonakis AK (2014) SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat Cell Biol 16(12):1146–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kobayashi T, Zhang H, Tang WW, Irie N, Withey S, Klisch D, Sybirna A, Dietmann S, Contreras DA, Webb R et al (2017) Principles of early human development and germ cell program from conserved model systems. Nature 546:416–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160(1):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Werhli AV, Husmeier D (2008) Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. J Bioinform Comput Biol 6(03):543–572

    Article  CAS  PubMed  Google Scholar 

  47. Penfold CA, Buchanan-Wollaston V, Denby KJ, Wild DL (2012) Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics 28(12):i233–i241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oates CJ, Korkola J, Gray JW, Mukherjee S et al (2014) Joint estimation of multiple related biological networks. Ann Appl Stat 8(3):1892–1919

    Article  Google Scholar 

  49. Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F et al (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J 75(1):26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kashima H, Yamanishi Y, Kato T, Sugiyama M, Tsuda K (2009) Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach. Bioinformatics 25(22):2962–2968

    Article  CAS  PubMed  Google Scholar 

  51. Gholami AM, Fellenberg K (2010) Cross-species common regulatory network inference without requirement for prior gene affiliation. Bioinformatics 26(8):1082–1090

    Article  CAS  PubMed  Google Scholar 

  52. Zhang X, Moret BM (2010) Refining transcriptional regulatory networks using network evolutionary models and gene histories. Algorithms Mol Biol 5(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Joshi A, Beck Y, Michoel T (2015) Multi-species network inference improves gene regulatory network reconstruction for early embryonic development in Drosophila. J Comput Biol 22(4):253–265

    Article  CAS  PubMed  Google Scholar 

  54. Shervashidze N, Schweitzer P, Leeuwen EJv, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. J Mach Learn Res 12(Sep):2539–2561

    Google Scholar 

  55. Turing A (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  56. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620

    Article  CAS  PubMed  Google Scholar 

  57. Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF (2012) Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system. Science 336(6082):721–724

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pisarev A, Poustelnikova E, Samsonova M, Reinitz J (2008) Flyex, the quantitative atlas on segmentation gene expression at cellular resolution. Nucleic Acids Res 37(Suppl 1):D560–D566

    PubMed  PubMed Central  Google Scholar 

  59. Poustelnikova E, Pisarev A, Blagov M, Samsonova M, Reinitz J (2004) A database for management of gene expression data in situ. Bioinformatics 20(14):2212–2221

    Article  CAS  PubMed  Google Scholar 

  60. Kozlov K, Gursky V, Kulakovskiy I, Samsonova M (2014) Sequence-based model of gap gene regulatory network. BMC Genomics 15(12):S6

    Article  PubMed  PubMed Central  Google Scholar 

  61. Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422

    Article  CAS  PubMed  Google Scholar 

  62. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Windram OP, Rodrigues RT, Lee S, Haines M, Bayer TS (2017) Engineering microbial phenotypes through rewiring of genetic networks. Nucleic Acids Res 45(8):4984–4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, Raineri E, Garriga-Canut M, Serrano L (2008) Evolvability and hierarchy in rewired bacterial gene networks. Nature 452(7189):840–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee MJ, Albert SY, Gardino AK, Heijink AM, Sorger PK, MacBeath G, Yaffe MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149(4):780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CAP is supported by the Wellcome Trust (grant 083089/Z/07/Z). IG is supported by EPSRC/BBSRC research grant EP/L016494/1. AS is supported by a 4-year Wellcome Trust PhD Scholarship and Cambridge International Trust Scholarship. DLW acknowledges support from the Engineering and Physical Science Research Council (grant EP/R014337/1).

CAP, IG, and AS BBSRC-EPSRC funded OpenPlant Synthetic Biology Research Centre (BB/L014130/1) through the OpenPlant Fund scheme. CAP and AS also thank M. Azim Surani for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Penfold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Penfold, C.A., Gherman, I., Sybirna, A., Wild, D.L. (2019). Inferring Gene Regulatory Networks from Multiple Datasets. In: Sanguinetti, G., Huynh-Thu, V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8882-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8882-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8881-5

  • Online ISBN: 978-1-4939-8882-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics