Autophagy pp 91-117 | Cite as

Biophysical Studies of LC3 Family Proteins

  • Javier H. Hervás
  • Zuriñe Antón
  • Alicia AlonsoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)


Autophagy is an important cellular process in which cell components are degraded in a controlled way and their building blocks are recycled into new macromolecules. Autophagy starts within a double-membrane container, the autophagosome, itself the result of a number of interconversions of cell membranous elements. In our recent work, we have described reconstituted model systems for the interactions of autophagy proteins with membrane lipid bilayers and for the autophagy protein-mediated vesicle tethering and fusion, with the aim of ultimately reconstituting the autophagosome formation. The present chapter describes in detail (a) the steps required for the preparation of semisynthetic lipid vesicles (liposomes), including giant unilamellar vesicles, (b) ultracentrifugation and fluorescence methods for assaying protein binding to membranes, and (c) procedures for assessing vesicle–vesicle aggregation and fusion. The latter include methods for intervesicular total lipid mixing, mixing of lipids in the vesicle inner monolayers, and aqueous contents mixing.

Key words

LC3/GABARAP proteins Autophagy proteins Membrane fusion Liposomes Fusion assays Membrane biophysics Protein–lipid interactions 



The authors thank Ms. Araceli Marcos for her technical support. This work was supported in part by grants from FEDER/Spanish Ministry of Economy (BFU 2011-28566, BFU 2015-66306-P) and the Basque Government (IT838-13). J.H.H. and Z.A. were predoctoral fellows supported by the University of the Basque Country; J.H.H. is a postdoctoral fellow supported by the University of the Basque Country, and Z.A. is a postdoctoral research associate supported by BrisSynBio at the University of Bristol.


  1. 1.
    Landajuela A, Hervás JH, Antón Z et al (2016) Lipid geometry and bilayer curvature modulate LC3/GABARAP-mediated model autophagosomal elongation. Biophys J 110:411–422CrossRefGoogle Scholar
  2. 2.
    Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14:759–774CrossRefGoogle Scholar
  3. 3.
    Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12:831–835CrossRefGoogle Scholar
  4. 4.
    Ktistakis NT, Tooze SA (2016) Digesting the expanding mechanisms of autophagy. Trends Cell Biol 26:624–635CrossRefGoogle Scholar
  5. 5.
    Chu CT, Ji J, Dagda RK et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15:1197–1205CrossRefGoogle Scholar
  6. 6.
    Antón Z, Landajuela A, Hervás JH et al (2016) Human Atg8-cardiolipin interactions in mitophagy: specific properties of LC3B, GABARAPL2 and GABARAP. Autophagy 12:2386–2403CrossRefGoogle Scholar
  7. 7.
    Landeta O, Landajuela A, Gil D et al (2011) Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process. J Biol Chem 286:8213–8230CrossRefGoogle Scholar
  8. 8.
    Yethon JA, Epand RF, Leber B et al (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941CrossRefGoogle Scholar
  9. 9.
    Johnson AE (2005) Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6:1078–1092CrossRefGoogle Scholar
  10. 10.
    Goñi FM, Villar AV, Nieva JL et al (2003) Interaction of phospholipases C and sphingomyelinase with liposomes. Methods Enzymol 372:3–19CrossRefGoogle Scholar
  11. 11.
    Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099CrossRefGoogle Scholar
  12. 12.
    Ellens H, Bentz J, Szoka FC (1985) H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry 24:3099–3106CrossRefGoogle Scholar
  13. 13.
    Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta Biomembr 858:161–168CrossRefGoogle Scholar
  14. 14.
    Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRefGoogle Scholar
  15. 15.
    Bagatolli LA (2003) Thermotropic behavior of lipid mixtures studied at the level of single vesicles: giant unilamellar vesicles and two-photon excitation fluorescence microscopy. Methods Enzymol 367:233–253CrossRefGoogle Scholar
  16. 16.
    Montes L-R, Alonso A, Goñi FM et al (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93:3548–3554CrossRefGoogle Scholar
  17. 17.
    Hervás JH, Landajuela A, Antón Z et al (2017) Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge. Sci Rep 7:15614CrossRefGoogle Scholar
  18. 18.
    Hernández-Tiedra S, Fabriàs G, Dávila D et al (2016) Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy 12:2213–2229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Javier H. Hervás
    • 1
    • 2
  • Zuriñe Antón
    • 1
    • 2
  • Alicia Alonso
    • 1
    • 2
    Email author
  1. 1.Instituto Biofisika (CSIC, UPV/EHU)BilbaoSpain
  2. 2.Departamento de Bioquímica y Biología MolecularUniversidad del País VascoBilbaoSpain

Personalised recommendations