Autophagy pp 589-600 | Cite as

Investigating Non-selective Autophagy in Drosophila

  • Szabolcs Takáts
  • Sarolta Tóth
  • Győző Szenci
  • Gábor JuhászEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)


Drosophila melanogaster is a popular model organism in molecular genetics and cell biology. Various Drosophila tissues have been successfully used for studying autophagy, and our knowledge about the genetic regulation of this process is constantly growing. It is important to use assays that distinguish between non-selective autophagy and the selective forms. Here we introduce a selection of proven methods, which, taking into account their limitations, are suitable to measure non-selective autophagy in Drosophila fat and other tissues.

Key words

Drosophila Non-selective autophagy Fluorescent dyes 


  1. 1.
    Mulakkal NC et al (2014) Autophagy in Drosophila: from historical studies to current knowledge. Biomed Res Int 2014:273473CrossRefGoogle Scholar
  2. 2.
    Lorincz P, Mauvezin C, Juhasz G (2017) Exploring autophagy in Drosophila. Cells 6(3):E22CrossRefGoogle Scholar
  3. 3.
    Nezis IP et al (2008) Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 180(6):1065–1071CrossRefGoogle Scholar
  4. 4.
    Juhász G et al (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21(23):3061–3066CrossRefGoogle Scholar
  5. 5.
    Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428(9 Pt A):1714–1724CrossRefGoogle Scholar
  6. 6.
    Tsuboyama K et al (2016) The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354(6315):1036–1041CrossRefGoogle Scholar
  7. 7.
    Nagy P et al (2015) How and why to study autophagy in Drosophila: it's more than just a garbage chute. Methods 75:151–161CrossRefGoogle Scholar
  8. 8.
    Mauvezin C et al (2014) Assays to monitor autophagy in Drosophila. Methods 68(1):134–139CrossRefGoogle Scholar
  9. 9.
    Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178CrossRefGoogle Scholar
  10. 10.
    Rusten TE et al (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7(2):179–192CrossRefGoogle Scholar
  11. 11.
    Hegedus K et al (2016) The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol Biol Cell 27(20):3132–3142CrossRefGoogle Scholar
  12. 12.
    Takats S et al (2013) Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol 201(4):531–539CrossRefGoogle Scholar
  13. 13.
    Chang YY, Neufeld TP (2009) An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 20(7):2004–2014CrossRefGoogle Scholar
  14. 14.
    Pulipparacharuvil S et al (2005) Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 118(Pt 16):3663–3673CrossRefGoogle Scholar
  15. 15.
    Takats S et al (2014) Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell 25(8):1338–1354CrossRefGoogle Scholar
  16. 16.
    Rusten TE et al (2007) ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17(20):1817–1825CrossRefGoogle Scholar
  17. 17.
    Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460CrossRefGoogle Scholar
  18. 18.
    Proikas-Cezanne T et al (2007) Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett 581(18):3396–3404CrossRefGoogle Scholar
  19. 19.
    Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222CrossRefGoogle Scholar
  20. 20.
    Varga K et al (2016) Loss of Atg16 delays the alcohol-induced sedation response via regulation of Corazonin neuropeptide production in Drosophila. Sci Rep 6:34641CrossRefGoogle Scholar
  21. 21.
    Scott RC, Juhász G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17(1):1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Szabolcs Takáts
    • 1
    • 2
  • Sarolta Tóth
    • 2
  • Győző Szenci
    • 2
  • Gábor Juhász
    • 2
    • 3
    Email author
  1. 1.Hungarian Academy of Sciences, Premium Postdoctorate Research ProgramBudapestHungary
  2. 2.Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
  3. 3.Institute of GeneticsBiological Research CentreSzegedHungary

Personalised recommendations