Autophagy pp 257-280 | Cite as

Imaging Autophagy in hiPSC-Derived Midbrain Dopaminergic Neuronal Cultures for Parkinson’s Disease Research

  • Petros Stathakos
  • Natalia Jimenez-Moreno
  • Lucy Crompton
  • Paul Nistor
  • Maeve A. Caldwell
  • Jon D. LaneEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)


To appreciate the positive or negative impact of autophagy during the initiation and progression of human diseases, the isolation or de novo generation of appropriate cell types is required to support focused in vitro assays. In human neurodegenerative diseases such as Parkinson’s disease (PD), specific subsets of acutely sensitive neurons become susceptible to stress-associated operational decline and eventual cell death, emphasizing the need for functional studies in those vulnerable groups of neurons. In PD, a class of dopaminergic neurons in the ventral midbrain (mDANs) is affected. To study these, human-induced pluripotent stem cells (hiPSCs) have emerged as a valuable tool, as they enable the establishment and study of mDAN biology in vitro. In this chapter, we describe a stepwise protocol for the generation of mDANs from hiPSCs using a monolayer culture system. We then outline how imaging-based autophagy assessment methodologies can be applied to these neurons, thereby providing a detailed account of the application of imaging-based autophagy assays to human iPSC-derived mDANs.

Key words

Autophagy hiPSC Stem cells Dopaminergic neurons Cell culture Immunofluorescence Parkinson’s disease 



Brain derived neurotrophic factor


Bovine serum albumin


Cyclic adenosine monophosphate


N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester


Dulbecco’s modified Eagle’s medium


Dimethyl sulfoxide


Glial-derived neurotrophic factor


4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline hydrochloride


Nonessential amino acids




4-(5-benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H-imidazol-2-yl)-benzamide hydrate


Sonic hedgehog



This work is supported by a Parkinson’s UK project grant (G1402), a Wellcome Trust Ph.D. studentship awarded to NJM through the Dynamic Cell Biology program (grant number 083474), and a Medical Research Council Ph.D. studentship (to PS).


  1. 1.
    Jimenez-Moreno N et al (2017) Induced pluripotent stem cell neuronal models for the study of autophagy pathways in human neurodegenerative disease. Cell 6(3):E24CrossRefGoogle Scholar
  2. 2.
    Jungverdorben J, Till A, Brustle O (2017) Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy. J Mol Med (Berl) 95(7):705–718CrossRefGoogle Scholar
  3. 3.
    Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113CrossRefGoogle Scholar
  4. 4.
    Technologies L (2015) Culturing pluripotent stem cells (PSCs) in essential 8TM mediumGoogle Scholar
  5. 5.
    Jaeger I et al (2011) Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development 138(20):4363–4374CrossRefGoogle Scholar
  6. 6.
    Kirkeby A et al (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1(6):703–714CrossRefGoogle Scholar
  7. 7.
    Kriks S et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480(7378):547–551CrossRefGoogle Scholar
  8. 8.
    Ozair MZ, Kintner C, Brivanlou AH (2013) Neural induction and early patterning in vertebrates. Wiley Interdiscip Rev Dev Biol 2(4):479–498CrossRefGoogle Scholar
  9. 9.
    Chambers SM et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280CrossRefGoogle Scholar
  10. 10.
    Arenas E, Denham M, Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development 142(11):1918–1936CrossRefGoogle Scholar
  11. 11.
    Sullivan GJ et al (2010) Induced pluripotent stem cells: epigenetic memories and practical implications. Mol Hum Reprod 16(12):880–885CrossRefGoogle Scholar
  12. 12.
    Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222CrossRefGoogle Scholar
  13. 13.
    Allan VJ (ed) (2000) Protein localization by fluorescence microscopy. A Practical Approach. Oxford University Press, OxfordGoogle Scholar
  14. 14.
    Allen GF et al (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14(12):1127–1135CrossRefGoogle Scholar
  15. 15.
    Nistor PA et al (2015) Long-term culture of pluripotent stem-cell-derived human neurons on diamond—a substrate for neurodegeneration research and therapy. Biomaterials 61:139–149CrossRefGoogle Scholar
  16. 16.
    Betin VM et al (2012) A cryptic mitochondrial targeting motif in Atg4D links caspase cleavage with mitochondrial import and oxidative stress. Autophagy 8(4):664–676CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Petros Stathakos
    • 1
  • Natalia Jimenez-Moreno
    • 1
  • Lucy Crompton
    • 1
  • Paul Nistor
    • 2
  • Maeve A. Caldwell
    • 3
  • Jon D. Lane
    • 1
    Email author
  1. 1.Cell Biology LaboratoriesSchool of Biochemistry, University of BristolBristolUK
  2. 2.School of Clinical Medicine, University of BristolBristolUK
  3. 3.Trinity College Institute for Neuroscience, Trinity CollegeDublinIreland

Personalised recommendations