Skip to main content

Predictive Modeling of Anti-Cancer Drug Sensitivity from Genetic Characterizations

  • Protocol
  • First Online:
Cancer Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1878))

Abstract

Accurately predicting sensitivity of tumor cells to anti-cancer drugs based on genetic characterizations is a significant challenge for personalized cancer therapy. This chapter provides a computational procedure to design predictive models from individual genomic characterizations and combine them to arrive at an integrated predictive model. Integrated modeling employs the complementary information from heterogeneous genetic characterizations to improve the prediction error as well as lowering the error confidence interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costello JC et al (2014) A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. https://doi.org/10.1038/nbt.2877

    Article  CAS  Google Scholar 

  2. Wan Q, Pal R (2014) An ensemble based top performing approach for NCI-dream drug sensitivity prediction challenge. PLoS One 9(6):e101183

    Article  Google Scholar 

  3. Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, Li D, Ullrich R, Koker M, Fischer F, Shimamura T, Rauh D, Mermel C, Fischer S, Stückrath I, Heynck S, Beroukhim R, Lin W, Winckler W, Shah K, LaFramboise T, Moriarty WF, Hanna M, Tolosi L, Rahnenführer J, Verhaak R, Chiang D, Getz G, Hellmich M, Wolf J, Girard L, Peyton M, Weir BA, Chen TH, Greulich H, Barretina J, Shapiro GI, Garraway LA, Gazdar AF, Minna JD, Meyerson M, Wong KK, Thomas RK (2009) Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest 119(6):1727–1740

    Article  CAS  Google Scholar 

  4. Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES, Golub TR (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci 98:10787–10792

    Article  CAS  Google Scholar 

  5. Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J, Grimshaw A, Theodorescu D (2007) A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci 104(32):13086–13091

    Article  CAS  Google Scholar 

  6. Mitsos A, Melas IN, Siminelakis P, Chairakaki AD, Saez-Rodriguez J, Alexopoulos LG (2009) Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput Biol 5(12):e1000591+

    Article  Google Scholar 

  7. Walther Z, Sklar J (2011) Molecular tumor profiling for prediction of response to anticancer therapies. Cancer J 17(2):71–79

    Article  CAS  Google Scholar 

  8. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67:301–320

    Article  Google Scholar 

  9. Barretina J et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607

    Article  CAS  Google Scholar 

  10. Riddick G, Song H, Ahn S, Walling J, Borges-Rivera D, Zhang W, Fine HA (2011) Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 27(2):220–224

    Article  CAS  Google Scholar 

  11. Bengtsson H, Simpson K, Bullard J, Hansen K (2008) aroma.affymetrix: a generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory. Tech. Rep. 745, Department of Statistics, University of California, Berkeley

    Google Scholar 

  12. Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8(6):469–477

    Article  CAS  Google Scholar 

  13. Wilhelm BT, Landry JR (2009) RNA-seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48(3):249–257

    Article  CAS  Google Scholar 

  14. Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer PA, Gao Y, Kim D, Boland J, Hicks B, Kim R, Chhangawala S, Jafari N, Raghavachari N, Gandara J, Garcia-Reyero N, Hendrickson C, Roberson D, Rosenfeld J, Smith T, Underwood JG, Wang M, Zumbo P, Baldwin DA, Grills GS, Mason CE (2014) Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol 32(9):915–925

    Article  Google Scholar 

  15. Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD (2011) Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 286(29):25443–25449

    Article  CAS  Google Scholar 

  16. Li F, Gonzalez FJ, Ma X (2012) LC–MS-based metabolomics in profiling of drug metabolism and bioactivation. Acta Pharm Sin B 2(2):118–125. Drug Metabolism and Transport

    Article  CAS  Google Scholar 

  17. Troyanskaya OG, Cantor MN, Sherlock G, Brown PO, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17(6):520–525

    Article  CAS  Google Scholar 

  18. Berlow N, Haider S, Wan Q, Geltzeiler M, Davis LE, Keller C, Berlow RN (2014) An integrated approach to anti-cancer drugs sensitivity prediction. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1155/2014/873436

    Article  Google Scholar 

  19. Berlow N, Davis LE, Cantor EL, Seguin B, Keller C, Pal R (2013) A new approach for prediction of tumor sensitivity to targeted drugs based on functional data. BMC Bioinformatics 14:239

    Article  CAS  Google Scholar 

  20. Robnik-Sikonja M, Kononenko I (1997) An adaptation of relief for attribute estimation in regression. In: Proceedings of the fourteenth international conference on machine learning (ICML ’97). Morgan Kaufmann Publishers Inc, San Francisco, pp 296–304

    Google Scholar 

  21. Šikonja MR, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69

    Article  Google Scholar 

  22. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, Karaman MW, Pratz KW, Pallares G, Chao Q, Sprankle KG, Patel HK, Levis M, Armstrong RC, James J, Bhagwat SS (2009) AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114(14):2984–2992

    Article  CAS  Google Scholar 

  23. Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lelias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23(3):329–336

    Article  CAS  Google Scholar 

  24. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132

    Article  CAS  Google Scholar 

  25. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  26. Meinshausen N (2006) Quantile regression forests. J Mach Learn Res 7:983–999

    Google Scholar 

  27. Biau G (2012) Analysis of a random forests model. J Mach Learn Res 98888:1063–1095

    Google Scholar 

  28. Shalabi LA, Shaaban Z, Kasasbeh B (2006) Data mining: a preprocessing engine. J Comput Sci 2(9):735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranadip Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rahman, R., Pal, R. (2019). Predictive Modeling of Anti-Cancer Drug Sensitivity from Genetic Characterizations. In: Krasnitz, A. (eds) Cancer Bioinformatics. Methods in Molecular Biology, vol 1878. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8868-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8868-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8866-2

  • Online ISBN: 978-1-4939-8868-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics