• Nathaniel S. Sickerman
  • Yilin HuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1876)


Hydrogenases catalyze the simple yet important interconversion between H2 and protons and electrons. Found throughout prokaryotes, lower eukaryotes, and archaea, hydrogenases are used for a variety of redox and signaling purposes and are found in many different forms. This diverse group of metalloenzymes is divided into [NiFe], [FeFe], and [Fe] variants, based on the transition metal contents of their active sites. A wide array of biochemical and spectroscopic methods has been used to elucidate hydrogenases, and this along with a general description of the main enzyme types and catalytic mechanisms is discussed in this chapter.

Key words

Hydrogenase [NiFe] hydrogenase [FeFe] hydrogenase [Fe] hydrogenase H-cluster Fe-GP cofactor 



The authors are supported by the National Institutes of Health grant GM67626 (to M.W.R. and Y.H.).


  1. 1.
    Lubitz W, Ogata H, Rüdiger O et al (2014) Hydrogenases. Chem Rev 114:4081–4148PubMedCrossRefGoogle Scholar
  2. 2.
    Lubitz W, Tumas W (2007) Hydrogen: an Overview. Chem Rev 107:3900–3903PubMedCrossRefGoogle Scholar
  3. 3.
    Krasna AI (1979) Hydrogenase: properties and applications. Enzym Microb Technol 1:165–172CrossRefGoogle Scholar
  4. 4.
    Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501PubMedCrossRefGoogle Scholar
  5. 5.
    Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272PubMedCrossRefGoogle Scholar
  6. 6.
    Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3011CrossRefGoogle Scholar
  7. 7.
    Hoffman BM, Lukoyanov D, Yang ZY et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Eberly JO, Ely RL (2008) Thermotolerant hydrogenases: biological diversity, properties, and biotechnological applications. Crit Rev Microbiol 34:117–130PubMedCrossRefGoogle Scholar
  9. 9.
    Ghirardi ML, King P, Kosourov S et al (2005) Development of algal systems for hydrogen photoproduction: addressing the hydrogenase oxygen-sensitivity problem. Wiley-VCH Verlag GmbH & Co, KGaA, pp 213–227Google Scholar
  10. 10.
    Armstrong FA, Belsey NA, Cracknell JA et al (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem Soc Rev 38:36–51PubMedCrossRefGoogle Scholar
  11. 11.
    Artero V, Fontecave M (2005) Some general principles for designing electrocatalysts with hydrogenase activity. Coord Chem Rev 249:1518–1535CrossRefGoogle Scholar
  12. 12.
    Lubitz W, Reijerse EJ, Messinger J (2008) Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energy Environ Sci 1:15–31CrossRefGoogle Scholar
  13. 13.
    Melis A (2005) Bioengineering of green algae to enhance photosynthesis and hydrogen production. Wiley-VCH Verlag GmbH & Co, KGaA, pp 229–240Google Scholar
  14. 14.
    Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365PubMedCrossRefGoogle Scholar
  15. 15.
    Fontecilla-Camps JC, Volbeda A, Cavazza C et al (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303PubMedCrossRefGoogle Scholar
  16. 16.
    Gu Z, Dong J, Allan CB et al (1996) Structure of the Ni sites in hydrogenases by x-ray absorption spectroscopy. Species variation and the effects of redox poise. J Am Chem Soc 118:11155–11165CrossRefGoogle Scholar
  17. 17.
    Davidson G, Choudhury SB, Gu Z et al (2000) Structural examination of the nickel site in Chromatium vinosum hydrogenase: redox state oscillations and structural changes accompanying reductive activation and CO binding. Biochemistry 39:7468–7479PubMedCrossRefGoogle Scholar
  18. 18.
    Foerster S, Stein M, Brecht M et al (2003) Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Am Chem Soc 125:83–93PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Moura JJ, Moura I, Huynh BH et al (1982) Unambiguous identification of the nickel EPR signal in nickel-61 enriched Desulfovibrio gigas hydrogenase. Biochem Biophys Res Commun 108:1388–1393PubMedCrossRefGoogle Scholar
  20. 20.
    Happe RP, Roseboom W, Egert G et al (2000) Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett 466:259–263PubMedCrossRefGoogle Scholar
  21. 21.
    De Lacey AL, Gutierrez-Sanchez C, Fernandez VM et al (2008) FTIR spectroelectro-chemical characterization of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough. J Biol Inorg Chem 13:1315–1320PubMedCrossRefGoogle Scholar
  22. 22.
    Pandelia M-E, Ogata H, Lubitz W (2010) Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 11:1127–1140PubMedCrossRefGoogle Scholar
  23. 23.
    Happe R, Rosenboom W, Pierik AJ et al (1997) Biological activation of hydrogen. Nature 385:126PubMedCrossRefGoogle Scholar
  24. 24.
    Pierik AJ, Hulstein M, Hagen WR et al (1998) A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur J Biochem 258:572–578PubMedCrossRefGoogle Scholar
  25. 25.
    Volbeda A, Garcin E, Piras C et al (1996) Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996CrossRefGoogle Scholar
  26. 26.
    Ogata H, Mizoguchi Y, Mizuno N et al (2002) Structural studies of the carbon monoxide complex of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J Am Chem Soc 124:11628–11635PubMedCrossRefGoogle Scholar
  27. 27.
    Siebert E, Horch M, Rippers Y et al (2013) Resonance Raman spectroscopy as a tool to monitor the active site of hydrogenases. Angew Chem Int Ed 52:5162–5165CrossRefGoogle Scholar
  28. 28.
    Kuchenreuther JM, Guo Y, Wang H et al (2013) Nuclear resonance vibrational spectroscopy and electron paramagnetic resonance spectroscopy of 57Fe-enriched [FeFe] hydrogenase indicate stepwise assembly of the H-cluster. Biochemistry 52:818–826PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Guo Y, Wang H, Xiao Y et al (2008) Characterization of the Fe site in iron-sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg Chem 47:3969–3977PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kamali S, Wang H, Mitra D et al (2013) Observation of the Fe–CN and Fe–CO vibrations in the active site of [NiFe] hydrogenase by nuclear resonance vibrational spectroscopy. Angew Chem Int Ed 52:724–728CrossRefGoogle Scholar
  31. 31.
    Pershad HR, Duff JLC, Heering HA et al (1999) Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry 38:8992–8999PubMedCrossRefGoogle Scholar
  32. 32.
    Armstrong FA, Albracht SPJ (2005) [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philos Trans A Math Phys Eng Sci 363:937–954PubMedCrossRefGoogle Scholar
  33. 33.
    Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413PubMedCrossRefGoogle Scholar
  34. 34.
    Vincent KA, Armstrong FA (2005) Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases. Inorg Chem 44:798–809PubMedCrossRefGoogle Scholar
  35. 35.
    Vincent KA, Cracknell JA, Parkin A et al (2005) Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Dalton Trans:3397–3403Google Scholar
  36. 36.
    Millo D, Hildebrandt P, Pandelia ME et al (2011) SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions. Angew Chem Int Ed 50:2632–2634CrossRefGoogle Scholar
  37. 37.
    Gutierrez-Sanz O, Marques M, Pereira IAC et al (2013) Orientation and function of a membrane-bound enzyme monitored by electrochemical surface-enhanced infrared absorption spectroscopy. J Phys Chem Lett 4:2794–2798CrossRefGoogle Scholar
  38. 38.
    Millo D, Pandelia ME, Utesch T et al (2009) Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold surfaces. J Phys Chem B 113:15344–15351PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gutierrez-Sanchez C, Olea D, Marques M et al (2011) Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer. Langmuir 27:6449–6457PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Siegbahn PEM, Tye JW, Hall MB (2007) Computational studies of [NiFe] and [FeFe] hydrogenases. Chem Rev 107:4414–4435PubMedCrossRefGoogle Scholar
  41. 41.
    Schultz KM, Chen D, Hu X (2013) [Fe]-Hydrogenase and models that contain iron-acyl ligation. Chem Asian J 8:1068–1075PubMedCrossRefGoogle Scholar
  42. 42.
    Wang N, Wang M, Chen L et al (2013) Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Dalton Trans 42:12059–12071PubMedCrossRefGoogle Scholar
  43. 43.
    Evans DJ, Pickett CJ (2003) Chemistry and the hydrogenases. Chem Soc Rev 32:268–275PubMedCrossRefGoogle Scholar
  44. 44.
    Tard C, Pickett CJ (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev 109:2245–2274PubMedCrossRefGoogle Scholar
  45. 45.
    Esselborn J, Lambertz C, Adamska-Venkates A et al (2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol 9:607–609_PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Schaefer C, Bommer M, Hennig SE et al (2016) Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insight into O2-tolerant H2 oxidation. Structure 24:285–292CrossRefGoogle Scholar
  47. 47.
    Schäfer C, Friedrich B, Lenz O (2013) Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl Environ Microbiol 79:5137–5145PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gross R, Pisa R, Saenger M et al (2004) Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase. J Biol Chem 279:274–281PubMedCrossRefGoogle Scholar
  49. 49.
    Yahata N, Saitoh T, Takayama Y et al (2006) Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Biochemistry 45:1653–1662PubMedCrossRefGoogle Scholar
  50. 50.
    Sezer M, Frielingsdorf S, Millo D et al (2011) Role of the HoxZ subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha immobilized on electrodes. J Phys Chem B 115:10368–10374PubMedCrossRefGoogle Scholar
  51. 51.
    Garcin E, Vernede X, Hatchikian EC et al (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7:557–566PubMedCrossRefGoogle Scholar
  52. 52.
    Marques MC, Coelho R, Pereira IAC et al (2013) Redox state-dependent changes in the crystal structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough. Int J Hydrog Energy 38:8664–8682CrossRefGoogle Scholar
  53. 53.
    Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution x-ray structure analysis. Structure 5:1671–1680PubMedCrossRefGoogle Scholar
  54. 54.
    Marques MC, Coelho R, De Lacey AL et al (2010) The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidized, "as-isolated" state. J Mol Biol 396:893–907PubMedCrossRefGoogle Scholar
  55. 55.
    Volbeda A, Amara P, Iannello M et al (2013) Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenase. Chem Commun 49:7061–7063CrossRefGoogle Scholar
  56. 56.
    Kalms J, Schmidt A, Frielingsdorf S et al (2016) Krypton derivatization of an O2-tolerant membrane-bound [NiFe] hydrogenase reveals a hydrophobic tunnel network for gas transport. Angew Chem Int Ed 55:5586–5590CrossRefGoogle Scholar
  57. 57.
    Montet Y, Amara P, Volbeda A et al (1997) Gas access to the active site of Ni-Fe hydrogenases probed by x-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526PubMedCrossRefGoogle Scholar
  58. 58.
    Fritsch J, Scheerer P, Frielingsdorf S et al (2011) The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulfur center. Nature 479:249–252PubMedCrossRefGoogle Scholar
  59. 59.
    Shomura Y, Yoon K-S, Nishihara H et al (2011) Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479:253–256PubMedCrossRefGoogle Scholar
  60. 60.
    Fritsch J, Lenz O, Friedrich B (2013) Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat Rev Microbiol 11:106–114PubMedCrossRefGoogle Scholar
  61. 61.
    Szori-Doroghazi E, Maroti G, Szori M et al (2012) Analyses of the large subunit histidine-rich motif expose an alternative proton transfer pathway in [NiFe] hydrogenases. PLoS One 7:e34666PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lubitz W, van Gastel M, Gaertner W (2007) Nickel iron hydrogenases. Met Ions Life Sci 2:279–322Google Scholar
  63. 63.
    Barilone JL, Ogata H, Lubitz W et al (2015) Structural differences between the active sites of the Ni-A and Ni-B states of the [NiFe] hydrogenase: an approach by quantum chemistry and single crystal ENDOR spectroscopy. Phys Chem Chem Phys 17:16204–16212PubMedCrossRefGoogle Scholar
  64. 64.
    Riethausen J, Ruediger O, Gaertner W et al (2013) Spectroscopic and electrochemical characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: reversible redox behavior and interactions between electron transfer centers. Chembiochem 14:1714–1719PubMedCrossRefGoogle Scholar
  65. 65.
    Buhrke T, Lenz O, Krauss N et al (2005) Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J Biol Chem 280:23791–23796PubMedCrossRefGoogle Scholar
  66. 66.
    Pandelia ME, Fourmond V, Tron-Infossi P et al (2010) Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J Am Chem Soc 132:6991–7004PubMedCrossRefGoogle Scholar
  67. 67.
    Saggu M, Zebger I, Ludwig M et al (2009) Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J Biol Chem 284:16264–16276PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Saggu M, Teutloff C, Ludwig M et al (2010) Comparison of the membrane-bound [NiFe] hydrogenases from R. eutropha H16 and D. vulgaris Miyazaki F in the oxidized ready state by pulsed EPR. Phys Chem Chem Phys 12:2139–2148PubMedCrossRefGoogle Scholar
  69. 69.
    Guiral M, Tron P, Belle V et al (2006) Hyperthermostable and oxygen resistant hydrogenases from a hyperthermophilic bacterium Aquifex aeolicus: physicochemical properties. Int J Hydrog Energy 31:1424–1431CrossRefGoogle Scholar
  70. 70.
    Lamle SE, Albracht SPJ, Armstrong FA (2004) Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states. J Am Chem Soc 126:14899–14909PubMedCrossRefGoogle Scholar
  71. 71.
    Fernandez VM, Hatchikian EC, Patil DS et al (1986) ESR-detectable nickel and iron-sulfur centers in relation to the reversible activation of Desulfovibrio gigas hydrogenase. Biochim Biophys Acta Gen Subj 883:145–154CrossRefGoogle Scholar
  72. 72.
    Albracht SPJ, Ankel-Fuchs D, Boecher R et al (1988) Five new EPR signals assigned to nickel in methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg. Biochim Biophys Acta 955:86–102CrossRefGoogle Scholar
  73. 73.
    Gessner C, Trofanchuk O, Kawagoe K et al (1996) Single crystal EPR study of the Ni center of NiFe hydrogenase. Chem Phys Lett 256:518–524CrossRefGoogle Scholar
  74. 74.
    Trofanchuk O, Stein M, Gessner C et al (2000) Single crystal EPR studies of the oxidized active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Biol Inorg Chem 5:36–44PubMedCrossRefGoogle Scholar
  75. 75.
    van Gastel M, Fichtner C, Neese F et al (2005) EPR experiments to elucidate the structure of the ready and unready states of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F. Biochem Soc Trans 33:7–11PubMedCrossRefGoogle Scholar
  76. 76.
    Volbeda A, Martin L, Cavazza C et al (2005) Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. J Biol Inorg Chem 10:239–249PubMedCrossRefGoogle Scholar
  77. 77.
    Ogata H, Hirota S, Nakahara A et al (2005) Activation process of [NiFe] hydrogenase elucidated by high-resolution x-ray analyses: conversion of the ready to the unready state. Structure 13:1635–1642PubMedCrossRefGoogle Scholar
  78. 78.
    Ogata H, Kellers P, Lubitz W (2010) The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). J Mol Biol 402:428–444PubMedCrossRefGoogle Scholar
  79. 79.
    Carepo M, Tierney DL, Brondino CD et al (2002) 17O ENDOR detection of a solvent-derived Ni-(OHx)-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas. J Am Chem Soc 124:281–286PubMedCrossRefGoogle Scholar
  80. 80.
    Siegbahn PEM (2007) Hybrid density functional study of the oxidized states of NiFe-hydrogenase. C R Chim 10:766–774CrossRefGoogle Scholar
  81. 81.
    Pardo A, Lacey AL, Fernandez VM et al (2007) Characterization of the active site of catalytically inactive forms of [NiFe] hydrogenases by density functional theory. J Biol Inorg Chem 12:751–760PubMedCrossRefGoogle Scholar
  82. 82.
    Kurkin S, George SJ, Thorneley RNF et al (2004) Hydrogen-induced activation of the [NiFe]-hydrogenase from Allochromatium vinosum as studied by stopped-flow infrared spectroscopy. Biochemistry 43:6820–6831PubMedCrossRefGoogle Scholar
  83. 83.
    Bleijlevens B, Broekhuizen FA, De Lacey AL et al (2004) The activation of the [NiFe]-hydrogenase from Allochromatium vinosum. An infrared spectro-electrochemical study. J Biol Inorg Chem 9:743–752PubMedCrossRefGoogle Scholar
  84. 84.
    George SJ, Kurkin S, Thorneley RNF et al (2004) Reactions of H2, CO, and O2 with active [NiFe]-hydrogenase from Allochromatium vinosum. A stopped-flow infrared study. Biochemistry 43:6808–6819PubMedCrossRefGoogle Scholar
  85. 85.
    Roncaroli F, Bill E, Friedrich B et al (2015) Cofactor composition and function of a H2-sensing regulatory hydrogenase as revealed by Mossbauer and EPR spectroscopy. Chem Sci 6:4495–4507PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bagley KA, Van Garderen CJ, Chen M et al (1994) Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. Biochemistry 33:9229–9236PubMedCrossRefGoogle Scholar
  87. 87.
    Pandelia ME, Ogata H, Currell LJ et al (2010) Inhibition of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide: an FTIR and EPR spectroscopic study. Biochim Biophys Acta 1797:304–313PubMedCrossRefGoogle Scholar
  88. 88.
    De Lacey AL, Stadler C, Fernandez VM et al (2002) IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. J Biol Inorg Chem 7:318–326PubMedCrossRefGoogle Scholar
  89. 89.
    Brecht M, van Gastel M, Buhrke T et al (2003) Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J Am Chem Soc 125:13075–13083PubMedCrossRefGoogle Scholar
  90. 90.
    Foerster S, van Gastel M, Brecht M et al (2005) An orientation-selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase. J Biol Inorg Chem 10:51–62PubMedCrossRefGoogle Scholar
  91. 91.
    Fontecilla-Camps JC, Amara P, Cavazza C et al (2009) Structure-function relationships of anaerobic gas-processing metalloenzymes. Nature 460:814–822PubMedCrossRefGoogle Scholar
  92. 92.
    Dole F, Medina M, More C et al (1996) Spin-spin interactions between the Ni site and the [4Fe-4S] centers as a probe of light-induced structural changes in active Desulfovibrio gigas hydrogenase. Biochemistry 35:16399–16406PubMedCrossRefGoogle Scholar
  93. 93.
    Medina M, Williams R, Cammack R et al (1994) Studies of light-induced nickel EPR signals in Desulfovibrio gigas hydrogenase. J Chem Soc Faraday Trans 90:2921–2924CrossRefGoogle Scholar
  94. 94.
    Kellers P, Pandelia ME, Currell LJ et al (2009) FTIR study on the light sensitivity of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: Ni-C to Ni-L photoconversion, kinetics of proton rebinding and H/D isotope effect. Phys Chem Chem Phys 11:8680–8683PubMedCrossRefGoogle Scholar
  95. 95.
    Kampa M, Pandelia ME, Lubitz W et al (2013) A metal-metal bond in the light-induced state of [NiFe] hydrogenases with relevance to hydrogen evolution. J Am Chem Soc 135:3915–3925PubMedCrossRefGoogle Scholar
  96. 96.
    De Lacey AL, Fernandez VM, Rousset M et al (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330PubMedCrossRefGoogle Scholar
  97. 97.
    Ogata H, Lubitz W, Higuchi Y (2009) [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Dalton Trans 37:7577–7587CrossRefGoogle Scholar
  98. 98.
    Ogata H, Nishikawa K, Lubitz W (2015) Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520:571–574PubMedCrossRefGoogle Scholar
  99. 99.
    Roberts LM, Lindahl PA (1995) Stoichiometric reductive titrations of Desulfovibrio gigas hydrogenase. J Am Chem Soc 117:2565–2572CrossRefGoogle Scholar
  100. 100.
    Peters JW, Lanzilotta WN, Lemon BJ et al (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858PubMedCrossRefGoogle Scholar
  101. 101.
    Nicolet Y, Piras C, Legrand P et al (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23PubMedCrossRefGoogle Scholar
  102. 102.
    Moser CC, Page CC, Farid R et al (1995) Biological electron transfer. J Bioenerg Biomembr 27:263–274PubMedCrossRefGoogle Scholar
  103. 103.
    Page CC, Moser CC, Chen X et al (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52PubMedCrossRefGoogle Scholar
  104. 104.
    Mulder DW, Boyd ES, Sarma R et al (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465:248–251PubMedCrossRefGoogle Scholar
  105. 105.
    Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969–12973PubMedCrossRefGoogle Scholar
  106. 106.
    Silakov A, Wenk B, Reijerse E et al (2009) 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys Chem Chem Phys 11:6592–6599PubMedCrossRefGoogle Scholar
  107. 107.
    Berggren G, Adamska A, Lambertz C et al (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lambertz C, Leidel N, Havelius KG et al (2011) O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 286:40614–40623PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Foster CE, Krämer T, Wait AF et al (2012) Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation. J Am Chem Soc 134:7553–7557PubMedCrossRefGoogle Scholar
  110. 110.
    Hong G, Cornish AJ, Hegg EL et al (2011) On understanding proton transfer to the biocatalytic [Fe-Fe]H sub-cluster in [Fe-Fe]H2ases: QM/MM MD simulations. Biochim Biophys Acta 1807:510–517PubMedCrossRefGoogle Scholar
  111. 111.
    Cornish AJ, Gaertner K, Yang H et al (2011) Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. J Biol Chem 286:38341–38347PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Long H, King PW, Chang CH (2014) Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study. J Phys Chem B 118:890–900PubMedCrossRefGoogle Scholar
  113. 113.
    Cornish AJ, Ginovska B, Thelen A et al (2016) Single-amino acid modifications reveal additional controls on the proton pathway of [FeFe]-hydrogenase. Biochemistry 55:3165–3173PubMedCrossRefGoogle Scholar
  114. 114.
    Ginovska-Pangovska B, Ho MH, Linehan JC et al (2014) Molecular dynamics study of the proposed proton transport pathways in [FeFe]-hydrogenase. Biochim Biophys Acta 1837:131–138PubMedCrossRefGoogle Scholar
  115. 115.
    Albracht SPJ, Roseboom W, Hatchikian EC (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. J Biol Inorg Chem 11:88–101PubMedCrossRefGoogle Scholar
  116. 116.
    Popescu CV, Muenck E (1999) Electronic structure of the H cluster in [Fe]-hydrogenases. J Am Chem Soc 121:7877–7884CrossRefGoogle Scholar
  117. 117.
    Roseboom W, Lacey AL, Fernandez VM et al (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11:102–118PubMedCrossRefGoogle Scholar
  118. 118.
    Silakov A, Kamp C, Reijerse E et al (2009) Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii. Biochemistry 48:7780–7786PubMedCrossRefGoogle Scholar
  119. 119.
    Adamska A, Silakov A, Lambertz C et al (2012) Identification and characterization of the "super-reduced" state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew Chem Int Ed 51:11458–11462CrossRefGoogle Scholar
  120. 120.
    Mulder DW, Ratzloff MW, Shepard EM et al (2013) EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii. J Am Chem Soc 135:6921–6929PubMedCrossRefGoogle Scholar
  121. 121.
    Zampella G, Greco C, Fantucci P et al (2006) Proton reduction and dihydrogen oxidation on models of the [2Fe] H cluster of [Fe] hydrogenases. A density functional theory investigation. Inorg Chem 45:4109–4118PubMedCrossRefGoogle Scholar
  122. 122.
    Bruschi M, Zampella G, Fantucci P et al (2005) DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases. Coord Chem Rev 249:1620–1640CrossRefGoogle Scholar
  123. 123.
    Bruschi M, Fantucci P, De Gioia L (2003) Density functional theory investigation of the active site of [Fe]-hydrogenases: effects of redox state and ligand characteristics on structural, electronic, and reactivity properties of complexes related to the [2Fe] H subcluster. Inorg Chem 42:4773–4781PubMedCrossRefGoogle Scholar
  124. 124.
    Fan HJ, Hall MB (2001) A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J Am Chem Soc 123:3828–3829PubMedCrossRefGoogle Scholar
  125. 125.
    Ezzaher S, Capon JF, Gloaguen F et al (2007) Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Inorg Chem 46:3426–3428PubMedCrossRefGoogle Scholar
  126. 126.
    van der Vlugt JI, Rauchfuss TB, Whaley CM et al (2005) Characterization of a diferrous terminal hydride mechanistically relevant to the Fe-only hydrogenases. J Am Chem Soc 127:16012–16013PubMedCrossRefGoogle Scholar
  127. 127.
    Zhao X, Chiang CY, Miller ML et al (2003) Activation of alkenes and H2 by [Fe]-H2ase model complexes. J Am Chem Soc 125:518–524PubMedCrossRefGoogle Scholar
  128. 128.
    Zhao X, Georgakaki IP, Miller ML et al (2002) Catalysis of H2/D2 scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes. Inorg Chem 41:3917–3928PubMedCrossRefGoogle Scholar
  129. 129.
    Helm ML, Stewart MP, Bullock RM et al (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333:863–866PubMedCrossRefGoogle Scholar
  130. 130.
    Yang JY, Bullock RM, DuBois MR et al (2011) Fast and efficient molecular electrocatalysts for H2 production: using hydrogenase enzymes as guides. MRS Bull 36:39–47CrossRefGoogle Scholar
  131. 131.
    Rakowski DuBois M, DuBois DL (2009) The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem Soc Rev 38:62–72PubMedCrossRefGoogle Scholar
  132. 132.
    Afting C, Kremmer E, Brucker C et al (2000) Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis. Arch Microbiol 174:225–232PubMedCrossRefGoogle Scholar
  133. 133.
    Pilak O, Mamat B, Vogt S et al (2006) The crystal structure of the apoenzyme of the iron-Sulphur cluster-free hydrogenase. J Mol Biol 358:798–809PubMedCrossRefGoogle Scholar
  134. 134.
    Lyon EJ, Shima S, Boecher R et al (2004) Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J Am Chem Soc 126:14239–14248PubMedCrossRefGoogle Scholar
  135. 135.
    Lyon EJ, Shima S, Buurman G et al (2004) UV-A/blue-light inactivation of the "metal-free" hydrogenase (Hmd) from methanogenic archaea. The enzyme contains functional iron after all. Eur J Biochem 271:195–204PubMedCrossRefGoogle Scholar
  136. 136.
    Buurman G, Shima S, Thauer RK (2000) The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett 485:200–204PubMedCrossRefGoogle Scholar
  137. 137.
    Shima S, Schick M, Tamura H (2011) Preparation of [Fe]-hydrogenase from methanogenic archaea. Methods Enzymol 494:119–137PubMedCrossRefGoogle Scholar
  138. 138.
    Shima S, Lyon EJ, Thauer RK et al (2005) Mossbauer studies of the iron-sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site. J Am Chem Soc 127:10430–10435PubMedCrossRefGoogle Scholar
  139. 139.
    Wang X, Li Z, Zeng X et al (2008) The iron centre of the cluster-free hydrogenase (Hmd): low-spin Fe(II) or low-spin Fe(0)? Chem Commun 30:3555–3557CrossRefGoogle Scholar
  140. 140.
    Salomone-Stagni M, Stellato F, Whaley CM et al (2010) The iron-site structure of [Fe]-hydrogenase and model systems: an x-ray absorption near edge spectroscopy study. Dalton Trans 39:3057–3064PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Shima S, Lyon EJ, Sordel-Klippert M et al (2004) Structure elucidation: the cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew Chem Int Ed 43:2547–2551CrossRefGoogle Scholar
  142. 142.
    Korbas M, Vogt S, Meyer-Klaucke W (2006) The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J Biol Chem 281:30804–30813PubMedCrossRefGoogle Scholar
  143. 143.
    Hiromoto T, Ataka K, Pilak O et al (2009) The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett 583:585–590PubMedCrossRefGoogle Scholar
  144. 144.
    Shima S, Pilak O, Vogt S et al (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321:572–575PubMedCrossRefGoogle Scholar
  145. 145.
    Hiromoto T, Warkentin E, Moll J et al (2009) The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew Chem Int Ed 48:6457–6460CrossRefGoogle Scholar
  146. 146.
    Yang X, Hall MB (2009) Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-Hδ-···Hδ+-O, bond and methenyl-H4MPT+ triggered hydride transfer. J Am Chem Soc 131:10901–10908PubMedCrossRefGoogle Scholar
  147. 147.
    Shima S, Chen D, Xu T et al (2015) Reconstitution of [Fe]-hydrogenase using model complexes. Nat Chem 7:995–1002PubMedCrossRefGoogle Scholar
  148. 148.
    Abou Hamdan A, Dementin S, Liebgott PP et al (2012) Understanding and tuning the catalytic bias of hydrogenase. J Am Chem Soc 134:8368–8371PubMedCrossRefGoogle Scholar
  149. 149.
    Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461PubMedCrossRefGoogle Scholar
  150. 150.
    Liebgott PP, de Lacey AL, Burlat B et al (2011) Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J Am Chem Soc 133:986–997PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations