Skip to main content

Isolation of Synthetic Antibodies Against BCL-2-Associated X Protein (BAX)

  • Protocol
  • First Online:
BCL-2 Family Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1877))

Abstract

The BCL-2 protein family plays central roles in the mitochondrial pathway of cell apoptosis. The BCL-2-Associated X protein (BAX), along with other proapoptotic proteins, induces cell death in response to a variety of stress stimuli. Upon receipt of killing signals, cytosolic BAX is activated and translocates to mitochondria where it causes mitochondrial outer membrane permeabilization (MOMP) and initials a series of cellular events that eventually lead to cell destruction. Despite recent progress toward understanding the structure, function, and activation mechanism of BAX, detailed information about how cytosolic BAX can be inhibited is still limited. Here we describe a method of selecting synthetic antibody fragments (Fabs) against BAX using phage display. Synthetic antibodies discovered from the selection have been used as structural probes to gain novel mechanistic details on BAX inhibition. This synthetic antibody selection method could be potentially applied to other BCL-2 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danial NN, Korsmeyer SJ (2004) Cell death. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(7):1640

    Article  CAS  Google Scholar 

  3. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59

    Article  CAS  PubMed  Google Scholar 

  5. Westphal D, Kluck RM, Dewson G (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21(2):196–205

    Article  CAS  PubMed  Google Scholar 

  6. Walensky LD, Gavathiotis E (2011) BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci 36(12):642–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng EH, Tjandra N, Walensky LD (2008) BAX activation is initiated at a novel interaction site. Nature 455(7216):1076–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD (2010) BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell 40(3):481–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Almo SS, Cheng EH, Gavathiotis E (2016) An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol Cell 63(3):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DC, Kluck RM, Adams JM, Colman PM (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152(3):519–531

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z, Subramaniam S, Kale J, Liao C, Huang B, Brahmbhatt H, Condon SG, Lapolla SM, Hays FA, Ding J, He F, Zhang XC, Li J, Senes A, Andrews DW, Lin J (2016) BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO J 35(2):208–236

    Article  CAS  PubMed  Google Scholar 

  12. Hsu Y-T, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc Natl Acad Sci U S A 94(8):3668–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolter KG, Hsu Y-T, Smith CL, Nechushtan A, Xi X-G, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139(5):1281–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pancera M, Zhou T, Druz A, Georgiev IS, Soto C, Gorman J et al (2014) Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514(7523):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koellhoffer JF, Chen G, Sandesara RG, Bale S, Ollmann Saphire E, Chandran K et al (2012) Two synthetic antibodies that recognize and neutralize distinct proteolytic forms of the Ebola virus envelope glycoprotein. Chembiochem 13(17):2549–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao J, Sidhu SS, Wells JA (2009) Two-state selection of conformation-specific antibodies. Proc Natl Acad Sci U S A 106(9):3071–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koerber JT, Thomsen ND, Hannigan BT, Degrado WF, Wells JA (2013) Nature-inspired design of motif-specific antibody scaffolds. Nat Biotechnol 31(10):916–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fellouse FA, Esaki K, Birtalan S, Raptis D, Cancasci VJ, Koide A et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373(4):924–940

    Article  CAS  PubMed  Google Scholar 

  19. Uchime O, Dai Z, Biris N, Lee D, Sidhu SS, Li S et al (2016) Synthetic antibodies inhibit Bcl-2-associated X protein (BAX) through blockade of the N-terminal activation site. J Biol Chem 291(1):89–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

J.R.L. gratefully acknowledges funding from the Irma T. Hirschl Foundation, and the NIH (R01 AI125462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dai, Z., Lai, J.R. (2019). Isolation of Synthetic Antibodies Against BCL-2-Associated X Protein (BAX). In: Gavathiotis, E. (eds) BCL-2 Family Proteins. Methods in Molecular Biology, vol 1877. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8861-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8861-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8860-0

  • Online ISBN: 978-1-4939-8861-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics