Skip to main content

CW EPR and DEER Methods to Determine BCL-2 Family Protein Structure and Interactions: Application of Site-Directed Spin Labeling to BAK Apoptotic Pores

  • Protocol
  • First Online:
Book cover BCL-2 Family Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1877))

Abstract

The continuous wave (CW) and pulse electron paramagnetic resonance (EPR) methods enable the measurement of distances between spin-labeled residues in biopolymers including proteins, providing structural information. Here we describe the CW EPR deconvolution/convolution method and the four-pulse double electron–electron resonance (DEER) approach for distance determination, which were applied to elucidate the organization of the BAK apoptotic pores formed in the lipid bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbell WL, Altenbach C (1994) Site-directed spin labeling of membrane proteins. In: Membrane protein structure: experimental approaches. Oxford University Press, London, pp 244–248

    Google Scholar 

  2. Hubbell WL, Lopez CJ, Altenbach C, Yang Z (2013) Technological advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 23:725–733. https://doi.org/10.1016/j.sbi.2013.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roser P, Schmidt MJ, Drescher M, Summerer D (2016) Site-directed spin labeling of proteins for distance measurements in vitro and in cells. Org Biomol Chem 14(24):5468–5476. https://doi.org/10.1039/C6OB00473C

    Article  CAS  PubMed  Google Scholar 

  4. Fanucci GE, Cafiso DS (2006) Recent advances and applications of site-directed spin labeling. Curr Opin Struct Biol 16(5):644–653. https://doi.org/10.1016/j.sbi.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  5. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28(19):7806–7812

    Article  CAS  PubMed  Google Scholar 

  6. Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A 91(5):1667–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fleissner MR, Bridges MD, Brooks EK, Cascio D, Kalai T, Hideg K, Hubbell WL (2011) Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proc Natl Acad Sci U S A 108(39):16241–16246. https://doi.org/10.1073/pnas.1111420108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stevens MA, McKay JE, Robinson JLS, El Mkami H, Smith GM, Norman DG (2016) The use of the Rx spin label in orientation measurement on proteins, by EPR. Phys Chem Chem Phys 18(8):5799–5806. https://doi.org/10.1039/C5CP04753F

    Article  CAS  PubMed  Google Scholar 

  9. Islam SM, Roux B (2015) Simulating the distance distribution between spin-labels attached to proteins. J Phys Chem B 119(10):3901–3911. https://doi.org/10.1021/jp510745d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahu ID, McCarrick RM, Troxel KR, Zhang R, Smith HJ, Dunagan MM, Swartz MS, Rajan PV, Kroncke BM, Sanders CR, Lorigan GA (2013) DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry 52(38):6627–6632. https://doi.org/10.1021/bi4009984

    Article  CAS  PubMed  Google Scholar 

  11. Hustedt EJ, Smirnov AI, Laub CF, Cobb CE, Beth AH (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J 72(4):1861–1877. https://doi.org/10.1016/S0006-3495(97)78832-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rabenstein MD, Shin YK (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci U S A 92(18):8239–8243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altenbach C, Oh KJ, Trabanino RJ, Hideg K, Hubbell WL (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40(51):15471–15482

    Article  CAS  PubMed  Google Scholar 

  14. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142(2):331–340. https://doi.org/10.1006/jmre.1999.1944S1090-7807(99)91944-4

    Article  CAS  PubMed  Google Scholar 

  15. Oh KJ, Singh P, Lee K, Foss K, Lee S, Park M, Aluvila S, Kim RS, Symersky J, Walters DE (2010) Conformational changes in BAK, a pore-forming proapoptotic Bcl-2 family member, upon membrane insertion and direct evidence for the existence of BH3-BH3 contact interface in BAK homo-oligomers. J Biol Chem 285(37):28924–28937. https://doi.org/10.1074/jbc.M110.135293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aluvila S, Mandal T, Hustedt E, Fajer P, Choe JY, Oh KJ (2014) Organization of the mitochondrial apoptotic BAK pore: oligomerization of the BAK homodimers. J Biol Chem 289(5):2537–2551. https://doi.org/10.1074/jbc.M113.526806

    Article  CAS  PubMed  Google Scholar 

  17. Mandal T, Shin S, Aluvila S, Chen HC, Grieve C, Choe JY, Cheng EH, Hustedt EJ, Oh KJ (2016) Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore. Sci Rep 6:30763. https://doi.org/10.1038/srep30763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh KJ, Altenbach C, Collier RJ, Hubbell WL (2000) Site-directed spin labeling of proteins. Applications to diphtheria toxin. In: Holst O (ed) Bacterial toxins. Methods and protocols, Methods in molecular biology, vol 145. Humana Press, Totowa, NJ, pp 147–169

    Chapter  Google Scholar 

  19. Eaton SS, Eaton GR (2000) Distance measurements by CW and pulsed EPR. In: Berliner LJ, Eaton SS, Eaton GR (eds) Biological magnetic resonance, vol 19. Kluwer Academic/Plenum Publishers, New York, pp 1–27

    Google Scholar 

  20. Kittell AW, Hustedt EJ, Hyde JS (2012) Inter-spin distance determination using L-band (1–2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR). J Magn Reson 221:51–56. https://doi.org/10.1016/j.jmr.2012.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang Z, Bridges MD, Lopez CJ, Rogozhnikova OY, Trukhin DV, Brooks EK, Tormyshev V, Halpern HJ, Hubbell WL (2016) A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement. J Magn Reson 269:50–54. https://doi.org/10.1016/j.jmr.2016.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borbat PP, Georgieva ER, Freed JH (2013) Improved sensitivity for long-distance measurements in biomolecules: five-pulse double electron–electron resonance. J Phys Chem Lett 4(1):170–175. https://doi.org/10.1021/jz301788n

    Article  CAS  PubMed  Google Scholar 

  23. Saxena S, Freed JH (1996) Double quantum two-dimensional Fourier transform electron spin resonance: distance measurements. Chem Phys Lett 251(1):102–110. https://doi.org/10.1016/0009-2614(96)00075-9

    Article  CAS  Google Scholar 

  24. Miick SM, Martinez GV, Fiori WR, Todd AP, Millhauser GL (1992) Short alanine-based peptides may form 3(10)-helices and not alpha-helices in aqueous solution. Nature 359(6396):653–655. https://doi.org/10.1038/359653a0

    Article  CAS  PubMed  Google Scholar 

  25. Chen M, Margittai M, Chen J, Langen R (2007) Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 282(34):24970–24979. https://doi.org/10.1074/jbc.M700368200

    Article  CAS  PubMed  Google Scholar 

  26. Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys J 73(6):3287–3298. https://doi.org/10.1016/S0006-3495(97)78353-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hustedt EJ, Stein RA, Sethaphong L, Brandon S, Zhou Z, Desensi SC (2006) Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model. Biophys J 90(1):340–356. https://doi.org/10.1529/biophysj.105.068544

    Article  CAS  PubMed  Google Scholar 

  28. Hustedt EJ, Beth AH (2000) Structural information from CW-EPR spectra of dipolar coupled nitroxide spin labels. In: Berliner LJ, Eaton SS, Eaton GR (eds) Biological magnetic resonance, vol 19. Kluwer Academic/Plenum Publishers, New York, pp 155–184

    Google Scholar 

  29. Zhou Z, DeSensi SC, Stein RA, Brandon S, Dixit M, McArdle EJ, Warren EM, Kroh HK, Song L, Cobb CE, Hustedt EJ, Beth AH (2005) Solution structure of the cytoplasmic domain of erythrocyte membrane band 3 determined by site-directed spin labeling. Biochemistry 44(46):15115–15128. https://doi.org/10.1021/bi050931t

    Article  CAS  PubMed  Google Scholar 

  30. Pake GE (1948) Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J Chem Phys 16(4):327–336. https://doi.org/10.1063/1.1746878

    Article  CAS  Google Scholar 

  31. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446. https://doi.org/10.1146/annurev-physchem-032511-143716

    Article  CAS  PubMed  Google Scholar 

  32. Jeschke G (2002) Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromol Rapid Commun 23(4):227–246. https://doi.org/10.1002/1521-3927(20020301)23:4<227::AID-MARC227>3.0.CO;2-D

    Article  CAS  Google Scholar 

  33. McHaourab HS, Oh KJ, Fang CJ, Hubbell WL (1997) Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry 36(2):307–316

    Article  CAS  PubMed  Google Scholar 

  34. Slichter CP (1990) Principles of magnetic resonance. In: Springer series in solid-state sciences, vol 1, third enlarged and updated edition. Springer, New York, pp 65–70

    Google Scholar 

  35. Jeschke G, Pannier M, Spiess HW (2000) Double electron-electron resonance. In: Berliner LJ, Eaton SS, Eaton GR (eds) Biological magnetic resonance, vol 19. Kluwer Academic/Plenum Publishers, New York, pp 493–512

    Google Scholar 

  36. Jeschke G, Spiess HW (2006) Distance measurements in solid-state NMR and EPR spectroscopy. In: Lecture notes in physics, vol 684. Springer-Berlag, Berlin, Heidelberg, pp 21–63

    Google Scholar 

  37. Milov AD, Maryasov AG, Tsvetkov YD (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Appl Magn Reson 15:107–143

    Article  CAS  Google Scholar 

  38. Coffman RE, Buettner GR (1979) A limit function for long-range ferromagnetic and antiferromagnetic superexchange. J Phys Chem 83(18):2387–2392. https://doi.org/10.1021/j100481a017

    Article  CAS  Google Scholar 

  39. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9(16):1895–1910. https://doi.org/10.1039/B614920K

    Article  CAS  PubMed  Google Scholar 

  40. Milov AD, Salikhov KM, Shirov MD (1981) Application of ELDOR in electron spin echo for magnetic center space distributions in solids. Fizika tverdogo tela 23(4):975–982

    CAS  Google Scholar 

  41. Fajer PG, Brown L, Song L (2007) Practical pulsed dipolar ESR (DEER). In: Hemminga MA, Berliner LJ (eds) ESR spectroscopy in membrane biophysics, Biological magnetic resonance, vol 27. Springer, New York, pp 95–128

    Chapter  Google Scholar 

  42. Jeschke G, Bender A, Paulsen H, Zimmermann H, Godt A (2004) Sensitivity enhancement in pulse EPR distance measurements. J Magn Reson 169(1):1–12. https://doi.org/10.1016/j.jmr.2004.03.024

    Article  CAS  PubMed  Google Scholar 

  43. Ward R, Bowman A, Sozudogru E, El-Mkami H, Owen-Hughes T, Norman DG (2010) EPR distance measurements in deuterated proteins. J Magn Reson 207(1):164–167. https://doi.org/10.1016/j.jmr.2010.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghimire H, McCarrick RM, Budil DE, Lorigan GA (2009) Significantly improved sensitivity of Q-band PELDOR/DEER experiments relative to X-band is observed in measuring the intercoil distance of a leucine zipper motif peptide (GCN4-LZ). Biochemistry 48(25):5782–5784. https://doi.org/10.1021/bi900781u

    Article  CAS  PubMed  Google Scholar 

  45. Zou P, McHaourab HS (2010) Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron-electron resonance and nanoscale bilayers. Biophys J 98(6):L18–L20. https://doi.org/10.1016/j.bpj.2009.12.4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Swanson MA, Kathirvelu V, Majtan T, Frerman FE, Eaton GR, Eaton SS (2011) Electron transfer flavoprotein domain II orientation monitored using double electron-electron resonance between an enzymatically reduced, native FAD cofactor, and spin labels. Protein Sci 20(3):610–620. https://doi.org/10.1002/pro.595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song L, Larion M, Chamoun J, Bonora M, Fajer PG (2010) Distance and dynamics determination by W-band DEER and W-band ST-EPR. Eur Biophys J 39(4):711–719. https://doi.org/10.1007/s00249-009-0565-3

    Article  CAS  PubMed  Google Scholar 

  48. Cruickshank PA, Bolton DR, Robertson DA, Hunter RI, Wylde RJ, Smith GM (2009) A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time. Rev Sci Instrum 80(10):103102. https://doi.org/10.1063/1.3239402

    Article  CAS  PubMed  Google Scholar 

  49. Hertel MM, Denysenkov VP, Bennati M, Prisner TF (2005) Pulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy. Magn Reson Chem 43:S248–S255. https://doi.org/10.1002/mrc.1681

    Article  CAS  PubMed  Google Scholar 

  50. Alvarez FJ, Orelle C, Davidson AL (2010) Functional reconstitution of an ABC transporter in nanodiscs for use in electron paramagnetic resonance spectroscopy. J Am Chem Soc 132(28):9513–9515. https://doi.org/10.1021/ja104047c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeschke G, Koch A, Jonas U, Godt A (2002) Direct conversion of EPR dipolar time evolution data to distance distributions. J Magn Reson 155(1):72–82. https://doi.org/10.1006/jmre.2001.2498

    Article  CAS  PubMed  Google Scholar 

  52. Chiang YW, Borbat PP, Freed JH (2005) The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson 172(2):279–295

    Article  CAS  PubMed  Google Scholar 

  53. Jeschke G, Panek G, Godt A, Bender A, Paulsen H (2004) Data analysis procedures for pulse ELDOR measurements of broad distance distributions. Appl Magn Reson 26:223–244

    Article  CAS  Google Scholar 

  54. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Res 30(3–4):473–498

    Article  CAS  Google Scholar 

  55. Twomey S (1963) On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J ACM 10(1):97–101. https://doi.org/10.1145/321150.321157

    Article  Google Scholar 

  56. Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4:1035–1038

    Google Scholar 

  57. Press WH, Vetterling WT, Teukolsky SA, Flannery BP (1994) Numerical recipes in FORTRAN—the art of scientific computing 2nd Ed. (W. H. Press, W. T. Vetterling, S. A. Teukolsky and B. P. Flannery), pp 799–803. https://doi.org/10.1137/1036047

    Article  Google Scholar 

  58. Chiang YW, Borbat PP, Freed JH (2005) Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. J Magn Reson 177(2):184–196. https://doi.org/10.1016/j.jmr.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  59. Sen KI, Logan TM, Fajer PG (2007) Protein dynamics and monomer-monomer interactions in AntR activation by electron paramagnetic resonance and double electron-electron resonance. Biochemistry 46(41):11639–11649. https://doi.org/10.1021/bi700859p

    Article  CAS  PubMed  Google Scholar 

  60. Borbat PP, McHaourab HS, Freed JH (2002) Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J Am Chem Soc 124(19):5304–5314

    Article  CAS  PubMed  Google Scholar 

  61. Brandon S, Beth AH, Hustedt EJ (2012) The global analysis of DEER data. J Magn Reson 218:93–104. https://doi.org/10.1016/j.jmr.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stein RA, Beth AH, Hustedt EJ (2015) A straightforward approach to the analysis of double electron-electron resonance data. Methods Enzymol 563:531–567. https://doi.org/10.1016/bs.mie.2015.07.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, Kluck RM (2008) To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol Cell 30(3):369–380. https://doi.org/10.1016/j.molcel.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  64. Dewson G, Ma S, Frederick P, Hockings C, Tan I, Kratina T, Kluck RM (2012) Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ 19(4):661–670. https://doi.org/10.1038/cdd.2011.138

    Article  CAS  PubMed  Google Scholar 

  65. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DC, Kluck RM, Adams JM, Colman PM (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152(3):519–531. https://doi.org/10.1016/j.cell.2012.12.031

    Article  CAS  PubMed  Google Scholar 

  66. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36(3):487–499. https://doi.org/10.1016/j.molcel.2009.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saito M, Korsmeyer SJ, Schlesinger PH (2000) BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2(8):553–555. https://doi.org/10.1038/35019596

    Article  CAS  PubMed  Google Scholar 

  68. Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155(5):725–731. https://doi.org/10.1083/jcb.200107057jcb.200107057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dejean LM, Ryu SY, Martinez-Caballero S, Teijido O, Peixoto PM, Kinnally KW (2010) MAC and Bcl-2 family proteins conspire in a deadly plot. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2010.01.007

    Article  CAS  Google Scholar 

  70. Kuwana T, Olson NH, Kiosses WB, Peters B, Newmeyer DD (2016) Pro-apoptotic Bax molecules densely populate the edges of membrane pores. Sci Rep 6:27299. https://doi.org/10.1038/srep27299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grosse L, Wurm CA, Bruser C, Neumann D, Jans DC, Jakobs S (2016) Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J 35(4):402–413. https://doi.org/10.15252/embj.201592789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Salvador-Gallego R, Mund M, Cosentino K, Schneider J, Unsay J, Schraermeyer U, Engelhardt J, Ries J, Garcia-Saez AJ (2016) Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J 35(4):389–401. https://doi.org/10.15252/embj.201593384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schrodinger, LLC (2010) The PyMOL molecular graphics system, version 1.3

    Google Scholar 

  74. Moldoveanu T, Liu Q, Tocilj A, Watson M, Shore G, Gehring K (2006) The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell 24(5):677–688. https://doi.org/10.1016/j.molcel.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  75. Brouwer JM, Westphal D, Dewson G, Robin AY, Uren RT, Bartolo R, Thompson GV, Colman PM, Kluck RM, Czabotar PE (2014) Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Mol Cell 55(6):938–946. https://doi.org/10.1016/j.molcel.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  76. Hustedt EJ, Beth AH (1999) Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu Rev Biophys Biomol Struct 28:129–153

    Article  CAS  PubMed  Google Scholar 

  77. Arfken G (1970) Mathematical methods for physicists, 2nd edn. Academic Press, New York, pp 178–183

    Google Scholar 

  78. Altenbach C. https://sites.google.com/site/altenbach/labview-programs/epr-programs/short-distances; http://www.biochemistry.ucla.edu/biochem/Faculty/Hubbell/

  79. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89(2):175–184 S0092-8674(00)80197-X

    Article  CAS  PubMed  Google Scholar 

  80. Oh KJ, Barbuto S, Meyer N, Kim RS, Collier RJ, Korsmeyer SJ (2005) Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. J Biol Chem 280(1):753–767

    Article  CAS  PubMed  Google Scholar 

  81. Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2(10):754–761

    Article  CAS  PubMed  Google Scholar 

  82. Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265(31):18797–18802

    CAS  PubMed  Google Scholar 

  83. Oh KJ, Barbuto S, Pitter K, Morash J, Walensky LD, Korsmeyer SJ (2006) A membrane-targeted BID BCL-2 homology 3 peptide is sufficient for high potency activation of BAX in vitro. J Biol Chem 281(48):36999–37008. https://doi.org/10.1074/jbc.M602341200

    Article  CAS  PubMed  Google Scholar 

  84. Böttcher CJF, van Gent CM, Pries C (1961) A rapid and sensitive sub-micro phosphorus determination. Anal Chim Acta 24:203–204

    Article  Google Scholar 

  85. Eaton SS, Eaton GR (2005) Measurement of distances between electron spins using pulsed EPR. Biomedical EPR. Part B: Methodology, instrumentation, and dynamics. Springer, Boston, MA, USA

    Book  Google Scholar 

  86. Reginsson GW, Hunter RI, Cruickshank PAS, Bolton DR, Sigurdsson ST, Smith GM, Schiemann O (2012) W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling. J Magn Reson 216:175–182. https://doi.org/10.1016/j.jmr.2012.01.019

    Article  CAS  PubMed  Google Scholar 

  87. Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2006) High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. Proc Natl Acad Sci U S A 103(36):13386–13390. https://doi.org/10.1073/pnas.0605851103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Polyhach Y, Godt A, Bauer C, Jeschke G (2007) Spin pair geometry revealed by high-field DEER in the presence of conformational distributions. J Magn Reson 185(1):118–129. https://doi.org/10.1016/j.jmr.2006.11.012

    Article  CAS  PubMed  Google Scholar 

  89. Gordon-Grossman M, Kaminker I, Gofman Y, Shai Y, Goldfarb D (2011) W-Band pulse EPR distance measurements in peptides using Gd3+-dipicolinic acid derivatives as spin labels. Phys Chem Chem Phys 13(22):10771–10780. https://doi.org/10.1039/c1cp00011j

    Article  CAS  PubMed  Google Scholar 

  90. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157

    Article  CAS  PubMed  Google Scholar 

  91. Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium OXIDE1,2. J Phys Chem 64(1):188–190. https://doi.org/10.1021/j100830a521

    Article  CAS  Google Scholar 

  92. Fajer PG, Brown L, Song L (2007) Practical pulsed dipolar ESR (DEER). Biol Magn Reson 27:95–128

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. Candice Klug at the National Biomedical EPR Center, Milwaukee, Wisconsin for the technical support in Q-band experiments. We also thank Drs. Gunnar Jeschke and Christian Altenbach for helpful discussions and Mr. Carter Grieve for his proofreading the manuscript. This work was supported by NIH grant R01GM097508, EPR Center of the Rosalind Franklin University of Medicine and Science, and the RFUMS Start-up fund to. K.J.O.; NIH grant P01 GM080513 to E.J.H.; NIH grants RR022422 (DEER instrumentation grant), OD011937 (DEER instrumentation grant), and EB001980 (National Biomedical EPR Center grant) to C.K; and NSF Cooperative Agreement No. DMR-1644779 to L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Joon Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mandal, T., Hustedt, E.J., Song, L., Oh, K.J. (2019). CW EPR and DEER Methods to Determine BCL-2 Family Protein Structure and Interactions: Application of Site-Directed Spin Labeling to BAK Apoptotic Pores. In: Gavathiotis, E. (eds) BCL-2 Family Proteins. Methods in Molecular Biology, vol 1877. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8861-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8861-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8860-0

  • Online ISBN: 978-1-4939-8861-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics