Skip to main content

Standard Detection Protocol: PCR and RFLP Analyses Based on 16S rRNA Gene

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Phytoplasma detection and identification is primarily based on PCR followed by restriction fragment length polymorphism analysis. This method detects and differentiates phytoplasmas including those not yet identified. The protocol describes the application of this method for identification of phytoplasmas at 16S rRNA (16Sr) group and 16Sr subgroup levels on amplicons and also in silico on the same sequences.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berges R, Rott M, Seemüller E (2000) Range of phytoplasma concentration in various plant hosts as determined by competitive polymerase chain reaction. Phytopathology 90:1145–1152

    Article  CAS  Google Scholar 

  2. Bertaccini A, Marani F (1982) Electron microscopy of two viruses and mycoplasma-like organisms in lilies with deformed flowers. Phytopathol Mediterr 21:8–14

    Google Scholar 

  3. Cousin MT, Sharma AK, Isra S (1986) Correlation between light and electron microscopic observations and identification of mycoplasmalikeorganisms using consecutive 350 nm think sections. J Phytopathol 115:368–374

    Article  Google Scholar 

  4. Haggis GH, Sinha RC (1978) Scanning electron microscopy of mycoplasmalike organisms after freeze fracture of plant tissues affected with clover phyllody and aster yellows. Phytopathology 68:677–680

    Article  Google Scholar 

  5. Seemüller E (1976) Investigation to demonstrate mycoplasmalike organism in diseases plants by fluorescence microscopy. Acta Hortic 67:109–112

    Article  Google Scholar 

  6. Contaldo N, Bertaccini A, Paltrinieri S (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51(3):607–617

    CAS  Google Scholar 

  7. Contaldo N, Satta E, Zambon Y et al (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. J Microbiol Methods 127:105–110

    Article  CAS  Google Scholar 

  8. Hobbs HA, Reddy DVR, Reddy AS (1987) Detection of a mycoplasma-lke organism in peanut plants with witches’ broom using indirect enzyme-linked immunosorbent assay (ELISA). Plant Pathol 36:164–167

    Article  Google Scholar 

  9. Bellardi MG, Vibio M, Bertaccini A (1992) Production of a polyclonal antiserum to CY-MLO using infected Catharanthus roseus. Phytopathol Mediterr 31:53–55

    Google Scholar 

  10. Lee I-M, Gundersen-Rindal DE, Davis RE et al (1998) Revised classification scheme of phytoplasmas based an RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    Article  CAS  Google Scholar 

  11. Montano HG, Davis RE, Dally EL et al (2001) ‘Candidatus Phytoplasma brasiliense’, a new phytoplasma taxon associated with hibiscus witches’ broom disease. Int J Syst Evol Microbiol 51:1109–1118

    Article  CAS  Google Scholar 

  12. Lee I-M, Gundersen-Rindal D, Davis RE et al (2004) ‘Candidatus Phytoplasma asteris’, a novel taxon associated with aster yellows and related diseases. Int J Syst Bacteriol 54:1037–1048

    Article  CAS  Google Scholar 

  13. Lee I-M, Martini M, Marcone C et al (2004) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54:337–347

    Article  CAS  Google Scholar 

  14. Arocha Y, Lopez M, Pinol B et al (2005) ‘Candidatus Phytoplasma graminis’ and ‘Candidatus Phytoplasma caricae’, two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. Int J Syst Evol Microbiol 55:2451–2463

    Article  CAS  Google Scholar 

  15. Al-Saady NA, Khan AJ, Calari A et al (2008) ‘Candidatus Phytoplasma omanense’, a phytoplasma associated with witches’ broom of Cassia italica (Mill.) Lam. in Oman. Int J Syst Evol Microbiol 58:461–466

    Article  CAS  Google Scholar 

  16. Bertaccini A, Duduk B (2009) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48:355–378

    CAS  Google Scholar 

  17. Bertaccini A, Duduk B, Paltrinieri S et al (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 5:1763–1788

    Article  Google Scholar 

  18. IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  Google Scholar 

  19. Bertaccini A, Davis RE, Hammond RW et al (1992) Sensitive detection of mycoplasmalike organisms in field-collected and in vitro propagated plants of Brassica, Hydrangea and Chrysanthemum by polymerase chain reaction. Ann Appl Biol 121:593–599

    Article  Google Scholar 

  20. Alvarez E, Mejía JF, Llano GA et al (2009) Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Dis 93:1139–1145

    Article  CAS  Google Scholar 

  21. Cozza R, Bernardo L, Calari A et al (2008) Molecular identification of ‘Candidatus Phytoplasma asteris’ inducing histological anomalies in Silene nicaeensis. Phytoparasitica 36:290–293

    Article  CAS  Google Scholar 

  22. Duduk B, Botti S, Ivanović M et al (2004) Identification of phytoplasmas associated with grapevine yellows in Serbia. J Phytopathol 152:575–579

    Article  CAS  Google Scholar 

  23. Lee I-M, Bertaccini A, Vibio M et al (1995) Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology 85:728–735

    Article  CAS  Google Scholar 

  24. Lorenz KH, Schneider B, Ahrens U et al (1995) Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology 85:771–776

    Article  CAS  Google Scholar 

  25. Namba S, Kato S, Iwanami S et al (1993) Detection and differentiation of plant-pathogenic mycoplasmalike organisms using polymerase chain reaction. Phytopathology 83:786–791

    Article  CAS  Google Scholar 

  26. Lee I-M, Gundersen-Rindal DE, Bertaccini A (1998) Phytoplasma: ecology and genomic diversity. Phytopathology 88:1359–1366

    Article  CAS  Google Scholar 

  27. Schneider B, Seemüller E (1994) Presence of two set of ribosomal genes in phytopatogenic mollicutes. Appl Environ Microbiol 60:3409–3412

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liefting LW, Andersen MT, Beever RE et al (1996) Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma. Appl Environ Microbiol 62:3133–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jomantiene R, Davis RE, Valiunas D et al (2002) New group 16SrIII phytoplasma lineages in Lithuania exhibit rRNA interoperon sequence heterogeneity. Eur J Plant Pathol 108:507–517

    Article  CAS  Google Scholar 

  30. Davis RE, Jomantiene R, Kalvelyte A et al (2003) Differential amplification of sequence heterogenous ribosomal RNA genes and classification of the ‘Fragaria multicipita’ phytoplasma. Microbiol Res 158:229–236

    Article  CAS  Google Scholar 

  31. Duduk B, Calari A, Paltrinieri S et al (2009) Multigene analysis for differentiation of aster yellows phytoplasmas infecting carrots in Serbia. Ann Appl Biol 154:219–229

    Article  CAS  Google Scholar 

  32. Montano HG, Contaldo N, David WAT et al (2011) Hibiscus witches’ broom disease associated with different phytoplasmas taxa in Brazil. B Insectol 64:S249–S250

    Google Scholar 

  33. Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143:3381–3389

    Article  CAS  Google Scholar 

  34. Marcone C, Lee I-M, Davis RE et al (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol 50:1703–1713

    Article  CAS  Google Scholar 

  35. Martini M, Botti S, Marcone C et al (2002) Genetic variability among “flavescence dorée” phytoplasmas from different origins in Italy and France. Mol Cell Probes 16:197–208

    Article  CAS  Google Scholar 

  36. Martini M, Lee I-M, Bottner KD et al (2007) Ribosomal protein gene-based filogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 57:2037–2051

    Article  CAS  Google Scholar 

  37. Lee I-M, Bottner KD, Zhao Y et al (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 60:2887–2897

    Article  Google Scholar 

  38. Mitrović J, Kakizawa S, Duduk B et al (2011) The groEL gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Ann Appl Biol 159:41–48

    Article  Google Scholar 

  39. Cai H, Wei W, Davis RE et al (2008) Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches' broom phytoplasma group. Int J Syst Evol Microbiol 58:1448–1457

    Article  CAS  Google Scholar 

  40. Duduk B, Bertaccini A (2006) Corn with symptoms of reddening: new host of stolbur phytoplasma. Plant Dis 90:1313–1319

    Article  CAS  Google Scholar 

  41. Khan AJ, Botti S, Al-Subhi AM et al (2002) Molecular identification of a new phytoplasma associated with alfalfa witches' broom in Oman. Phytopathology 92:1038–1047

    Article  CAS  Google Scholar 

  42. Tolu G, Botti S, Garau R et al (2006) Identification of 16SrII-E phytoplasmas in Calendula arvensis L., Solanum nigrum L. and Chenopodium spp. Plant Dis 90:325–330

    Article  CAS  Google Scholar 

  43. Wei W, Davis RE, Lee I-M et al (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867

    Article  CAS  Google Scholar 

  44. Wei W, Lee I-M, Davis RE et al (2008) Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 58:2368–2377

    Article  CAS  Google Scholar 

  45. Zhao Y, Wei W, Lee I-M et al (2009) Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582–2593

    Article  CAS  Google Scholar 

  46. Deng SJ, Hiruki C (1991) Amplification of 16S ribosomal-RNA genes from culturable and nonculturable mollicutes. J Microbiol Methods 14:53–61

    Article  CAS  Google Scholar 

  47. Schneider B, Seemüller E, Smart CD et al (1995) Phylogenetic classification of plant pathogenic mycoplasmalike organisms or phytoplasmas. In: Razin S, Tully JG (eds) Molecular and diagnostic procedures in Mycoplasmology. Academic press, San Diego, CA, pp 369–380

    Chapter  Google Scholar 

  48. Gundersen DE, Lee I-M (1996) Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:144–151

    CAS  Google Scholar 

  49. Lee I-M, Hammond RW, Davis RE et al (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83:834–842

    Article  CAS  Google Scholar 

  50. Davis RE, Lee I-M (1993) Cluster-specific polymerase chain reaction amplification of 16S rDNA sequences for detection and identification of mycoplasmalike organisms. Phytopathology 83:1008–1011

    Article  CAS  Google Scholar 

  51. Padovan AC, Gibb KS, Bertaccini A et al (1995) Molecular detection of the Australian grapevine yellows phytoplasma and comparison with a grapevine yellows phytoplasma from Emilia-Romagna in Italy. Aust J Grape Wine Res 1:2531

    Article  Google Scholar 

  52. Lee I-M, Martini M, Bottner KD et al (2003) Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology 93:1368–1377

    Article  CAS  Google Scholar 

  53. Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Mol Cell Probes 20:87–91

    Article  CAS  Google Scholar 

  54. Skrzeczkowski LJ, Howell WE, Eastwell KC (2001) Bacterial sequences interfering in detection of phytoplasma by PCR using primers derived from the ribosomal RNA operon. Acta Hortic 550:417–424

    Article  CAS  Google Scholar 

  55. Heinrich M, Botti S, Caprara L et al (2001) Improved detection methods for fruit tree phytoplasmas. Plant Mol Biol Report 19:169–179

    Article  CAS  Google Scholar 

  56. Gibb KS, Padovan AC, Mogen BD (1995) Studies on sweet potato little-leaf phytoplasma detected in sweet potato and other plant species growing in northern Australia. Phytopathology 85:169–174

    Article  Google Scholar 

  57. Manimekalai R, Soumya VP, Sathish Kumar R et al (2010) Molecular detection of 16SrXI group phytoplasma associated with root (wilt) disease of coconut (Cocos nucifera) in India. Plant Dis 94:636

    Article  Google Scholar 

  58. Lee I-M, Gundersen DE, Hammond RW et al (1994) Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 84:559–566

    Article  CAS  Google Scholar 

  59. Harrison NA, Womack M, Carpio ML (2002) Detection and characterization of a lethal yellowing (16SrIV) group phytoplasma in Canary Island date palms affected by lethal decline in Texas. Plant Dis 86:676–681

    Article  CAS  Google Scholar 

  60. Jarausch W, Lansac M, Saillard C et al (1998) PCR assay for specific detection of European stone fruit yellows phytoplasmas and its use for epidemiological studies in France. Eur J Plant Pathol 104:17–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assunta Bertaccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bertaccini, A., Paltrinieri, S., Contaldo, N. (2019). Standard Detection Protocol: PCR and RFLP Analyses Based on 16S rRNA Gene. In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics