Skip to main content

Characterization of Phytoplasmal Effector Protein Interaction with Proteinaceous Plant Host Targets Using Bimolecular Fluorescence Complementation (BiFC)

  • Protocol
  • First Online:
Phytoplasmas

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Elucidating the molecular mechanisms underlying plant disease development has become an important aspect of phytoplasma research in the last years. Especially unraveling the function of phytoplasma effector proteins has gained interesting insights into phytoplasma-host interaction at the molecular level. Here, we describe how to analyze and visualize the interaction of a phytoplasma effector with its proteinaceous host partner using bimolecular fluorescence complementation (BiFC) in Nicotiana benthamiana mesophyll protoplasts. The protocol comprises a description of how to isolate protoplasts from leaves and how to transform these protoplasts with BiFC expression vectors containing the phytoplasma effector and the host interaction partner, respectively. If an interaction occurs, a fluorescent YFP-complex is reconstituted in the protoplast, which can be visualized using fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogenhout S, van der Hoorn R, Terauchi R et al (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant-Microbe Interact 22(2):115–122. https://doi.org/10.1094/MPMI-22-2-0115

    Article  CAS  PubMed  Google Scholar 

  2. Win J, Chaparro-Garcia A, Belhay K et al (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb Symp Quant Biol 77:1–13. https://doi.org/10.1101/sqb.2012.77.015933

    Article  Google Scholar 

  3. Zhou J, Chai J (2007) Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11:1–7. https://doi.org/10.1016/j.mib.2008.02.004

    Article  CAS  Google Scholar 

  4. Sugio A, MacLean AM, Kingdom HN et al (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49:175–195. https://doi.org/10.1146/annurev-phyto-072910-095323

    Article  CAS  PubMed  Google Scholar 

  5. Hoshi A, Oshima K, Kakizawa S et al (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A 106(15):6416–6421. https://doi.org/10.1073/pnas.0813038106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bai X, Correa VR, Toruño TY et al (2009) AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant-Microbe Interact 22(1):18–30. https://doi.org/10.1094/MPMI-22-1-0018

    Article  CAS  PubMed  Google Scholar 

  7. Sugio A, Kingdom HN, MacLean AM et al (2011) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A 108(48):E1254–E1263. https://doi.org/10.1073/pnas.1105664108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sugawara K, Honma Y, Komatsu K et al (2013) The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol 162(4):2005–2014. https://doi.org/10.1104/pp.113.218586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. MacLean AM, Orlovskis Z, Kowitwanich K et al (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 12(4):e1001835. https://doi.org/10.1371/journal.pbio.1001835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minato N, Himeno M, Hoshi A et al (2014) The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 4(7399):1–7. https://doi.org/10.1038/srep07399

    Article  CAS  Google Scholar 

  11. Siewert C, Luge T, Duduk B et al (2014) Analysis of expressed genes of the bacterium 'Candidatus phytoplasma mali’ highlights key features of virulence and metabolism. PLoS One 9(4). https://doi.org/10.1371/journal.pone.0094391

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sugio A, MacLean AM, Hogenhout SA (2014) The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol 202(3):838–848. https://doi.org/10.1111/nph.12721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janik K, Mithöfer A, Raffeiner M et al (2017) An effector of apple proliferation phytoplasma targets TCP transcription factors—a generalized virulence strategy of phytoplasma? Mol Plant Pathol 18(3):321–473. https://doi.org/10.1111/mpp.12409

    Article  CAS  Google Scholar 

  14. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246. https://doi.org/10.1038/340245a0

    Article  CAS  PubMed  Google Scholar 

  15. Janik K, Schlink K (2017) Unravelling the function of a bacterial effector from a non-cultivable plant pathogen using a Yeast Two-hybrid S screen. J Vis Exp 119. https://doi.org/10.3791/55150

  16. Golemis EA, Serebriiskii I, Law SF (1999) The yeast two-hybrid system: criteria for detecting physiologically significant protein-protein interactions. Curr Issues Mol Biol 1(1–2):31–45

    CAS  PubMed  Google Scholar 

  17. Serebriiskii I, Estojak J, Berman M et al (2000) Approaches to detecting false positives in Yeast Two-Hybrid systems. BioTechniques 28(2):328–336

    Article  CAS  PubMed  Google Scholar 

  18. Bruckner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788. https://doi.org/10.3390/ijms10062763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerppola T (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1(3):1278–1286. https://doi.org/10.1038/nprot.2006.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kudla J, Bock R (2016) Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28(5):1002–1008. https://doi.org/10.1105/tpc.16.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagai T, Ibata K, Park E et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90. https://doi.org/10.1038/nbt0102-87

    Article  CAS  PubMed  Google Scholar 

  22. Yoo S, Cho Y, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572. https://doi.org/10.1038/nprot.2007.199

    Article  CAS  PubMed  Google Scholar 

  23. Grefen C, Blatt MR (2012) A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotech 53(5):311–314. https://doi.org/10.2144/000113941

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Janik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Janik, K., Stellmach, H., Mittelberger, C., Hause, B. (2019). Characterization of Phytoplasmal Effector Protein Interaction with Proteinaceous Plant Host Targets Using Bimolecular Fluorescence Complementation (BiFC). In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics