Skip to main content

Methods to Screen Compounds Against Mutant p53 Misfolding and Aggregation for Cancer Therapeutics

  • Protocol
  • First Online:
Protein Misfolding Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1873))

  • 2458 Accesses

Abstract

p53 is a critical tumor suppressor that functions as a transcription factor. Mutations in the TP53 gene are observed in more than 50% of cancer cases worldwide. Several of these mutations lead to a less stable, aggregation-prone protein that accumulates in cancer cells. These mutations are associated with a gain of oncogenic function, which leads to cancer progression. p53 amyloid aggregation is a common feature in most of these mutants; thus, it can be used as a druggable target to reactivate or induce the degradation of p53 and promote a retraction in the aggressive pattern of mutant p53-containing cells. We show here a series of experiments for the screening and validation of new p53 antiamyloid compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  CAS  Google Scholar 

  2. Kastan MB, Onyekwere O, Sidransky D, Volgestain B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  3. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    Article  CAS  Google Scholar 

  4. Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26:1268–1286

    Article  CAS  Google Scholar 

  5. Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM et al (2003) Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42:9022–9027

    Article  CAS  Google Scholar 

  6. AnoBom AP, Rangel LP, Costa DC, De Oliveira GA, Sanches D, Braga C et al (2012) Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 287:28152–28162

    Article  CAS  Google Scholar 

  7. Silva JL, De Moura Gallo CV, Costa DC, Rangel LP (2014) Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci 39:260–267

    Article  CAS  Google Scholar 

  8. Wang G, Fersht AR (2015) Mechanism of initiation of aggregation of p53 revealed by Φ-value analysis. Proc Natl Acad Sci U S A 112:2437–2442

    Article  CAS  Google Scholar 

  9. Silva JL, Cino EA, Soares IN, Ferreira VF, De Oliveira GAP (2018) Targeting the prion-like aggregation of mutant p53 to combat cancer. Acc Chem Res 51:181–190

    Article  CAS  Google Scholar 

  10. De Smet F, Saiz Rubio M, Hompes D, De Baets G, Langenberg T et al (2017) Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol 242:24–38

    Article  Google Scholar 

  11. Nieva J, Song BD, Rogel JK, Kujawara D, Altobel L 3rd, Izharrudin A et al (2011) Cholesterol secosterol aldehydes induce amyloidogenesis and dysfunction of wild-type tumor protein p53. Chem Biol 29:920–927

    Article  Google Scholar 

  12. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S et al (2011) Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 7:285–295

    Article  CAS  Google Scholar 

  13. Cino EA, Soares IN, Pedrote MM, De Oliveira GA, Silva JL (2016) Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds. Sci Rep 6:32535

    Article  CAS  Google Scholar 

  14. Milena W, Maciej BO, Zuzanna TG, Bartosz W, Maciej Z, Alicja Z (2012) Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 7:e51426

    Article  Google Scholar 

  15. Bykov VJ, Wiman KG (2014) Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett 588:2622–2627

    Article  CAS  Google Scholar 

  16. Ishimaru D, AnoBom AP, Lima LM, Quesado PA, Oyama MF, De Moura Gallo CV et al (2009) Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation. Biochemistry 48:6126–6135

    Article  CAS  Google Scholar 

  17. Bullock AN, Henckel J, Dedecker BS, Johnson CM, Nikolova PV, Proctor MR et al (1997) Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci U S A 94:14338–14242

    Article  CAS  Google Scholar 

  18. Kovachev PS, Banerjee D, Rangel LP, Eriksson J, Pedrote MM, Martins-Dinis MMDC et al (2017) Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. J Biol Chem 292:9345–9357

    Article  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  20. Silva JL, Vieira TCRG, Gomes MPB, AnoBom AP, Lima LMTR, Freitas MS et al (2010) Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res 43:271–279

    Article  CAS  Google Scholar 

  21. Silva JL, Rangel LP, Costa DC, Cordeiro Y, De Moura Gallo CV (2013) Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 33(4):e00054

    Article  Google Scholar 

  22. Levy CB, Stumbo AC, AnoBom AP, Portari EA, Carneiro Y, Silva JL et al (2011) Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. Int J Biochem Cell Biol 43:60–64

    Article  CAS  Google Scholar 

  23. Ghosh S, Salot S, Sengupta S, Navalkar A, Ghosh D, Jacob R et al (2017) p53 amyloid formation leading to its loss of function: implications in cancer pathogenesis. Cell Death Differ 24:1784–1798

    Article  CAS  Google Scholar 

  24. Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A, Tiourin E et al (2016) Designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell 29:90–103

    Article  CAS  Google Scholar 

  25. Yang-Hartwich Y, Soteras MG, Lin ZP, Holmberg J, Sumi N, Craveiro V et al (2015) p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 34:3605–3616

    Article  CAS  Google Scholar 

  26. Lasagna-Reeves CA, Clos AL, Castillo-Carranza D, Sengupta U, Guerrero-Muñoz M, Kelly B et al (2013) Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. Biochem Biophys Res Commun 430:963–968

    Article  CAS  Google Scholar 

  27. Kluth M, Harasimowicz S, Burkhardt L, Grupp K, Krohn A, Prien K et al (2014) Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. Int J Cancer 135:1369–1380

    Article  CAS  Google Scholar 

  28. Forget KJ, Tremblay G, Roucou X (2013) p53 aggregates penetrate cells and induce the co-aggregation of intracellular p53. PLoS One 8:e69242

    Article  CAS  Google Scholar 

  29. Costa DC, De Oliveira GA, Cino EA, Soares IN, Rangel LP, Silva JL (2016) Aggregation and prion-like properties of misfolded tumor suppressors: is cancer a prion disease? Cold Spring Harb Perspect Biol 8. https://doi.org/10.1101/cshperspect.a023614

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Brazilian funding agencies CAPES, CNPq, FAPERJ, Fundação do Câncer and Serrapilheira Institute for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerson L. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferretti, G.D., da Costa, D.C.F., L. Silva, J., Pereira Rangel, L. (2019). Methods to Screen Compounds Against Mutant p53 Misfolding and Aggregation for Cancer Therapeutics. In: Gomes, C. (eds) Protein Misfolding Diseases. Methods in Molecular Biology, vol 1873. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8820-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8820-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8819-8

  • Online ISBN: 978-1-4939-8820-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics