Skip to main content

Screening Protein Aggregation in Cells Using Fluorescent Labels Coupled to Flow Cytometry

  • Protocol
  • First Online:
Protein Misfolding Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1873))

Abstract

Protein misfolding and aggregation into amyloid conformations have been described to underlie the onset of several human neurodegenerative diseases. Although a large number of biophysical approaches are available to study amyloids in vitro, we still need robust methods to address their self-assembly in living cells. In this context, simple cellular models, like bacteria and yeast, expressing recombinant amyloidogenic proteins are emerging as convenient systems for studying the formation of protein inclusions, their toxicity, propagation, and interactions. We describe here a simple and fast flow cytometry method able to detect intracellular inclusions, as well as to analyze the distribution of the amyloidogenic protein of interest in intact cells. Using specific fluorescent amyloid-dyes, such as thioflavin-S and ProteoStat, or the fusion of fluorescent molecules, such as GFP, the technique can be applied in the quantification of intracellular amyloid content, for the screening of antiamyloidogenic compounds, and to test epigenetic or environmental conditions able to modulate amyloid deposition in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Invernizzi G, Papaleo E, Sabate R, Ventura S (2012) Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 44:1541–1554

    Article  CAS  Google Scholar 

  2. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  3. Rapezzi C, Quarta CC, Riva L et al (2010) Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol 7:398–408

    Article  CAS  Google Scholar 

  4. Westermark P, Bergström J, Solomon A et al (2003) Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural considerations. Amyloid 10(Suppl 1):48–54

    CAS  PubMed  Google Scholar 

  5. Nelson R, Eisenberg D (2006) Structural models of amyloid like fibrils. Adv Protein Chem 73:235–282

    Article  CAS  Google Scholar 

  6. Mishra R, Sjölander D, Hammarström P (2011) Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red. Mol BioSyst 7:1232–1240

    Article  CAS  Google Scholar 

  7. Sabate R, Rodriguez-Santiago L, Sodupe M et al (2013) Thioflavin-T excimer formation upon interaction with amyloid fibers. Chem Commun (Camb) 49:5745–5747

    Article  CAS  Google Scholar 

  8. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid by Congo red spectral shift assay. Methods Enzymol 309:285–305

    Article  CAS  Google Scholar 

  9. Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  Google Scholar 

  10. Lee H-J, Lee S-J (2002) Characterization of cytoplasmic α-Synuclein aggregates. J Biol Chem 277:48976–48983

    Article  CAS  Google Scholar 

  11. García-Fruitós E, Sabate R, de Groot NS et al (2011) Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J 278:2419–2427

    Article  Google Scholar 

  12. de Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34:408–416

    Article  Google Scholar 

  13. Villaverde A, Corchero JL, Seras-Franzoso J, Garcia-Fruitós E (2015) Functional protein aggregates: just the tip of the iceberg. Nanomedicine 10:2881–2891

    Article  CAS  Google Scholar 

  14. Villar-Pique A, de Groot NS, Sabaté R et al (2012) The effect of Amyloidogenic peptides on bacterial aging correlates with their intrinsic aggregation propensity. J Mol Biol 421:270–281

    Article  CAS  Google Scholar 

  15. Villar-Piqué A, Espargaró A, Sabaté R et al (2012) Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors. Microb Cell Factories 11:55

    Article  Google Scholar 

  16. Navarro S, Carija A, Muñoz-Torrero D, Ventura S (2016) A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. Eur J Med Chem 121:785–792

    Article  CAS  Google Scholar 

  17. Moosavi B, Mousavi B, Macreadie IG (2015) Yeast model of amyloid-β and tau aggregation in Alzheimer’s disease. J Alzheimers Dis 47:9–16

    Article  CAS  Google Scholar 

  18. Tenreiro S, Munder MC, Alberti S, Outeiro TF (2013) Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. J Neurochem 127:438–452

    Article  CAS  Google Scholar 

  19. Yang J, Hao X, Cao X et al (2016) Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. elife 5:e11792

    Article  Google Scholar 

  20. Braun RJ, Büttner S, Ring J et al (2010) Nervous yeast: modeling neurotoxic cell death. Trends Biochem Sci 35:135–144

    Article  CAS  Google Scholar 

  21. Figley MD, Gitler AD (2013) Yeast genetic screen reveals novel therapeutic strategy for ALS. Rare Dis 1:e24420

    Article  Google Scholar 

  22. Telford WG, Hawley T, Subach F et al (2012) Flow cytometry of fluorescent proteins. Methods 57:318–330

    Article  CAS  Google Scholar 

  23. Espargaró A, Sabate R, Ventura S (2012) Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Mol BioSyst 8:2839

    Article  Google Scholar 

  24. Navarro S, Ventura S (2014) Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli. Biotechnol J 9:1259–1266

    Article  CAS  Google Scholar 

  25. Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695

    Article  CAS  Google Scholar 

  26. de Groot NS, Ventura S (2006) Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J Biotechnol 125:110–113

    Article  Google Scholar 

  27. Pouplana S, Espargaro A, Galdeano C et al (2014) Thioflavin-S staining of bacterial inclusion bodies for the fast, simple, and inexpensive screening of amyloid aggregation inhibitors. Curr Med Chem 21:1152–1159

    Article  CAS  Google Scholar 

  28. Hidalgo IH, Fleming T, Eckstein V et al (2016) Characterization of aggregate load and pattern in living yeast cells by flow cytometry. BioTechniques 61:137–148

    Article  CAS  Google Scholar 

  29. de Groot NS, Castillo V, Graña-Montes R, Ventura S (2012) AGGRESCAN: method, application, and perspectives for drug design. Methods Mol Biol 819:199–220

    Article  Google Scholar 

  30. Zambrano R, Jamroz M, Szczasiuk A et al (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43(W1):W306–W313

    Article  CAS  Google Scholar 

Download references

Acknowledgment

S.V. has been granted an ICREA ACADEMIA award. SV is supported by the Spanish Ministry of Economy and Competitiveness (MINECO), through project BIO2016-78310-R. We thank the flow cytometry facility (SCAC) at the Institut de Biotecnologia i Biomedicina (IBB) for their technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ventura, S., Navarro, S. (2019). Screening Protein Aggregation in Cells Using Fluorescent Labels Coupled to Flow Cytometry. In: Gomes, C. (eds) Protein Misfolding Diseases. Methods in Molecular Biology, vol 1873. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8820-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8820-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8819-8

  • Online ISBN: 978-1-4939-8820-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics