Skip to main content

Isolation and Culture of Glioblastoma Brain Tumor Stem Cells

  • Protocol
  • First Online:
Brain Tumor Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1869))

Abstract

Cancer stem cells (CSCs) have been identified in glioblastoma (GBM) and are proposed to be the main actors of post-treatment recurrence contributing to the very dismal prognosis of this devastating disease. Consequently, this important population of cells needs to be further studied to uncover potential vulnerabilities, identify novel therapeutic targets, and develop drugs that can be translated to the clinic. One obstacle preventing progress in understanding the biology of GBM and the development of novel therapies has arguably been the absence of biologically relevant in vitro models representative of the CSC population in GBM. Adherent and non-adherent serum-free culture methods, initially developed for culturing neural stem cells, have been adapted to identify, isolate, maintain, and expand brain tumor stem cells (BTSCs) from GBM. In this chapter, we describe a method to isolate and culture these BTSCs from fresh GBM patient samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  2. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  Google Scholar 

  3. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021. https://doi.org/10.1158/0008-5472.CAN-04-1364

    Article  CAS  PubMed  Google Scholar 

  4. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400. https://doi.org/10.1038/sj.onc.1208311

    Article  CAS  PubMed  Google Scholar 

  5. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumor initiating cells. Nature 432(7015):396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  6. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319. https://doi.org/10.1038/nm.2304

    Article  CAS  PubMed  Google Scholar 

  7. Bleau AM, Huse JT, Holland EC (2009) The ABCG2 resistance network of glioblastoma. Cell Cycle 8(18):2936–2944

    Article  Google Scholar 

  8. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C, Alessandri G, Marras C, Croci D, De Rossi M (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54(8):850–860. https://doi.org/10.1002/glia.20414

    Article  PubMed  Google Scholar 

  9. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. https://doi.org/10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  10. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumor stem cells. Nat Rev Cancer 6(6):425–436. https://doi.org/10.1038/nrc1889

    Article  CAS  PubMed  Google Scholar 

  11. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403. https://doi.org/10.1016/j.ccr.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  12. Cusulin C, Chesnelong C, Bose P, Bilenky M, Kopciuk K, Chan JA, Cairncross JG, Jones SJ, Marra MA, Luchman HA, Weiss S (2015) Precursor states of brain tumor initiating cell lines are predictive of survival in xenografts and associated with glioblastoma subtypes. Stem Cell Reports 5(1):1–9. https://doi.org/10.1016/j.stemcr.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luchman HA, Stechishin OD, Nguyen SA, Lun XQ, Cairncross JG, Weiss S (2014) Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival. Clin Cancer Res 20(22):5756–5767. https://doi.org/10.1158/1078-0432.ccr-13-3389

    Article  CAS  PubMed  Google Scholar 

  14. Stechishin OD, Luchman HA, Ruan Y, Blough MD, Nguyen SA, Kelly JJ, Cairncross JG, Weiss S (2013) On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro-Oncology 15(2):198–207. https://doi.org/10.1093/neuonc/nos302

    Article  CAS  PubMed  Google Scholar 

  15. Kelly JJ, Stechishin O, Chojnacki A, Lun X, Sun B, Senger DL, Forsyth P, Auer RN, Dunn JF, Cairncross JG, Parney IF, Weiss S (2009) Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens. Stem Cells 27(8):1722–1733. https://doi.org/10.1002/stem.98

    Article  CAS  PubMed  Google Scholar 

  16. Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, Kunz-Schughart LA (2013) CD133 as a biomarker for putative cancer stem cells in solid tumors: limitations, problems and challenges. J Pathol 229(3):355–378. https://doi.org/10.1002/path.4086

    Article  CAS  PubMed  Google Scholar 

  17. Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, Liu L, Eyler CE, Heddleston JM, Wu Q, Minhas S, Soeda A, Hoeppner DJ, Ravin R, McKay RD, McLendon RE, Corbeil D, Chenn A, Hjelmeland AB, Park DM, Rich JN (2011) Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2:e200. https://doi.org/10.1038/cddis.2011.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869. https://doi.org/10.1002/stem.1317

    Article  CAS  PubMed  Google Scholar 

  19. Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8):3691–3697. https://doi.org/10.1158/0008-5472.CAN-06-3912

    Article  CAS  PubMed  Google Scholar 

  20. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015. https://doi.org/10.1158/0008-5472.CAN-06-4180

    Article  CAS  PubMed  Google Scholar 

  21. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4(5):440–452. https://doi.org/10.1016/j.stem.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  22. Jijiwa M, Demir H, Gupta S, Leung C, Joshi K, Orozco N, Huang T, Yildiz VO, Shibahara I, de Jesus JA, Yong WH, Mischel PS, Fernandez S, Kornblum HI, Nakano I (2011) CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One 6(9):e24217. https://doi.org/10.1371/journal.pone.0024217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–580. https://doi.org/10.1016/j.stem.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  24. Chojnacki A, Weiss S (2008) Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc 3(6):935–940. https://doi.org/10.1038/nprot.2008.55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Stem Cell Network grant to S.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chesnelong, C., Restall, I., Weiss, S. (2019). Isolation and Culture of Glioblastoma Brain Tumor Stem Cells. In: Singh, S., Venugopal, C. (eds) Brain Tumor Stem Cells. Methods in Molecular Biology, vol 1869. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8805-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8805-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8804-4

  • Online ISBN: 978-1-4939-8805-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics