Skip to main content

Chromatin Immunoprecipitation (ChIP) Protocols for the Cancer and Developmental Biology Laboratory

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1869))

Abstract

Chromatin immunoprecipitation assays permit the isolation and subsequent identification of genomic DNA (gDNA) fragments bound directly or indirectly to proteins of interest, including transcription factors, co-factors, or chromatin remodeling proteins. These isolated DNA fragments may include gene regulatory regions from enhancers, super-enhancers, promoters, and/or insulators. Cells of interest can be obtained from embryonic tissues at various developmental time points or cancer cells from patients or derived from model systems, including patient-derived xenotransplants and primary cancer stem cells and cell lines. ChIP variants include ChIP-reChIP to identify targets bound to different transcription factors or members of protein complexes or, alternatively, to characterize the histone modifications accompanying occupation of specific regulatory regions by the protein of interest, such as a transcription factor. Subsequent analysis of ChIP experiments includes standard PCR, quantitative PCR (qPCR), and ChIPseq.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Van Lente F, Jackson JF, Weintraub H (1975) Identification of specific crosslinked histones after treatment of chromatin with formaldehyde. Cell 5(1):45–50

    Article  Google Scholar 

  2. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9(13):3047–3060

    Article  CAS  Google Scholar 

  3. Jackson V (1978) Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15(3):945–954

    Article  CAS  Google Scholar 

  4. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82(19):6470–6474

    Article  CAS  Google Scholar 

  5. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11(2):205–214

    Article  CAS  Google Scholar 

  6. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947

    Article  CAS  Google Scholar 

  7. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104

    Article  CAS  Google Scholar 

  8. Weinmann AS, Farnham PJ (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26(1):37–47

    Article  CAS  Google Scholar 

  9. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Eisenstat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McColl, H., Zagozewski, J.L., Eisenstat, D.D. (2019). Chromatin Immunoprecipitation (ChIP) Protocols for the Cancer and Developmental Biology Laboratory. In: Singh, S., Venugopal, C. (eds) Brain Tumor Stem Cells. Methods in Molecular Biology, vol 1869. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8805-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8805-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8804-4

  • Online ISBN: 978-1-4939-8805-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics