Skip to main content

Introduction to Brain Tumor Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1869))

Abstract

From stem cells, to the cancer stem cell hypothesis and intratumoral heterogeneity, the following introductory chapter on brain tumor stem cells explores the history of normal and cancerous stem cells, and their implication in the current model of brain tumor development. The origins of stem cells date back to the 1960s, when they were first described as cells capable of self-renewal, extensive proliferation, and differentiation. Since then, many advances have been made and adult stem cells are now known to be present in a very wide variety of tissues. Neural stem cells were subsequently discovered 30 years later, which was shortly followed by the discovery of cancer stem cells in leukemia and in brain tumors over the next decade, effectively enabling a new understanding of cancer. Since then, many markers including CD133, brain cancer stem cells have been implicated in a variety of phenomena including intratumoral heterogeneity on the genomic, cellular, and functional levels, tumor initiation, chemotherapy-resistance, radiation-resistance, and are believed to be ultimately responsible for tumor relapse. Understanding this small and rare population of cells could be the key to solving the great enigma that is cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McCulloch EA, Till JE, Siminovitch L (1965) The role of independent and dependent stem cells in the control of hemopoietic and immunologic responses. Wistar Inst Symp Monogr 4:61–68

    CAS  PubMed  Google Scholar 

  2. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336

    Article  CAS  Google Scholar 

  3. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  CAS  Google Scholar 

  4. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4):1001–1020

    CAS  PubMed  Google Scholar 

  5. Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765

    Article  CAS  Google Scholar 

  6. Kilpatrick TJ, Bartlett PF (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10:255–265

    Article  CAS  Google Scholar 

  7. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    Article  CAS  Google Scholar 

  8. Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340:471–473

    Article  CAS  Google Scholar 

  9. Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985

    Article  CAS  Google Scholar 

  10. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90:2074–2077

    Article  CAS  Google Scholar 

  11. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  Google Scholar 

  12. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  Google Scholar 

  13. McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  CAS  Google Scholar 

  14. Rao MS (1999) Multipotent and restricted precursors in the central nervous system. Anat Rec 257:137–148

    Article  CAS  Google Scholar 

  15. Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22(5):1784–1793

    Article  CAS  Google Scholar 

  16. Babu H et al (2007) Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS One 2(4):e388

    Article  Google Scholar 

  17. Uchida N et al (2000) Direct isolation of human central nervous system stem cells. PNAS 97(260):14720–14725

    Article  CAS  Google Scholar 

  18. Gritti A et al (1995) Basic fibroblast growth factor supports the proliferation of epidermal growth factor-generated neuronal precursor cells of the adult mouse CNS. Neurosci Lett 185(3):151–154

    Article  CAS  Google Scholar 

  19. Pierce GB, Dixon FJ (1959) Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12(3):573–583

    Article  CAS  Google Scholar 

  20. Illmensee K (1978) Reversion of malignancy and normalized differentiation of teratocarcinoma cells in chimeric mice. Basic Life Sci 12:3–25

    CAS  PubMed  Google Scholar 

  21. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72(9):3585–3589

    Article  CAS  Google Scholar 

  22. Haase D et al (1995) Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations. Blood 86(8):2906–2912

    CAS  PubMed  Google Scholar 

  23. Mehrotra B et al (1995) Cytogenetically aberrant cells in the stem cell compartment (CD34+lin-) in acute myeloid leukemia. Blood 86(3):1139–1147

    CAS  PubMed  Google Scholar 

  24. Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  CAS  Google Scholar 

  25. Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15(9):494–501

    Article  CAS  Google Scholar 

  26. Warner JK et al (2004) Concepts of human leukemic development. Oncogene 23(43):7164–7177

    Article  CAS  Google Scholar 

  27. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. PNAS 100(7):3983–3988

    Article  CAS  Google Scholar 

  28. Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66(21):10233–10237

    Article  Google Scholar 

  29. Herrera-Gayol A, Jothy S (1999) Adhesion proteins in the biology of breast cancer: contribution of CD44. Exp Mol Pathol 66(2):149–156

    Article  CAS  Google Scholar 

  30. Schabath H et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    Article  CAS  Google Scholar 

  31. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumours. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  32. Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  Google Scholar 

  33. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  Google Scholar 

  34. O’Brien CA et al (2007) A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature 445:106–110

    Article  Google Scholar 

  35. Ricci-Vitiani L et al (2007) Identification and expansion of human colon-cancer initiating cells. Nature 445:111–115

    Article  CAS  Google Scholar 

  36. Dalerba P et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163

    Article  CAS  Google Scholar 

  37. Johnson BE et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343(6167):189–193

    Article  CAS  Google Scholar 

  38. Meyer M et al (2015) Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A 112(3):851–856

    Article  CAS  Google Scholar 

  39. Patel AP et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401

    Article  CAS  Google Scholar 

  40. Reinartz R et al (2017) Functional subclone profiling for prediction of treatment-induced Intratumor population shifts and discovery of rational drug combinations in human glioblastoma. Clin Cancer Res 23(2):562–574

    Article  CAS  Google Scholar 

  41. Sottoriva A et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014

    Article  CAS  Google Scholar 

  42. Szerlip NJ et al (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109(8):3041–3046

    Article  CAS  Google Scholar 

  43. Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  Google Scholar 

  44. Liu G et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  Google Scholar 

  45. Beier D et al (2012) Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. J Neuro-Oncol 109(1):45–52

    Article  CAS  Google Scholar 

  46. Liu J et al (2013) Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells. Oncotarget 4(10):1698–1711

    PubMed  PubMed Central  Google Scholar 

  47. Ramaswamy V, Taylor MD (2015) The amazing and deadly glioma race. Cancer Cell 28(3):275–277

    Article  CAS  Google Scholar 

  48. Scorsetti M et al (2015) Multimodality therapy approaches, local and systemic treatment, compared with chemotherapy alone in recurrent glioblastoma. BMC Cancer 15:486

    Article  Google Scholar 

  49. Wei W et al (2016) Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell 29(4):563–573

    Article  CAS  Google Scholar 

  50. Kelly PN et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317(5836):337

    Article  CAS  Google Scholar 

  51. Quintana E et al (2008) Efficient tumor formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  Google Scholar 

  52. Clarke MF et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  Google Scholar 

  53. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  CAS  Google Scholar 

  54. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  Google Scholar 

  55. Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  CAS  Google Scholar 

  56. Hemmati HD et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183

    Article  CAS  Google Scholar 

  57. Ignatova TN et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206

    Article  Google Scholar 

  58. Taylor MD et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  CAS  Google Scholar 

  59. Beier D et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  CAS  Google Scholar 

  60. Zeppernick F et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  CAS  Google Scholar 

  61. Howard BM, Boockvar JA (2008) Stem cell marker CD133 expression predicts outcome in glioma patients. Neurosurgery 62(6):N8

    Article  Google Scholar 

  62. Thon N et al (2010) Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol Cell Neurosci 43(1):51–59

    Article  CAS  Google Scholar 

  63. Son MJ et al (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4(5):440–452

    Article  CAS  Google Scholar 

  64. Lathia JD et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6(5):421–432

    Article  CAS  Google Scholar 

  65. Bao S et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048

    Article  CAS  Google Scholar 

  66. Binda E et al (2012) The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22(6):765–780

    Article  CAS  Google Scholar 

  67. Day BW et al (2013) EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 23(2):238–248

    Article  CAS  Google Scholar 

  68. Nakada M et al (2010) The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer 126(5):1155–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Alonso MM et al (2011) Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6(11):e26740

    Article  CAS  Google Scholar 

  70. Suva ML et al (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157:580–594

    Article  CAS  Google Scholar 

  71. Kaneko Y et al (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22:139–153

    Article  CAS  Google Scholar 

  72. Venugopal C et al (2012) Bmi1 marks intermediate precursors during differentiation of human brain tumour initiating cells. Stem Cell Res 8(2):141–153

    Article  CAS  Google Scholar 

  73. Manoranjan B et al (2013) FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity medulloblastoma stem cells. Stem Cells 31(7):1266–1277

    Article  CAS  Google Scholar 

  74. Fong CY et al (2009) Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev 5:72–80

    Article  CAS  Google Scholar 

  75. Soeda A et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959

    Article  CAS  Google Scholar 

  76. Bidlingmaier S et al (2008) The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 86:1025–1032

    Article  CAS  Google Scholar 

  77. Griguer CE et al (2008) CD133 is a marker of bioenergetic stress in human glioma. PLoS One 3:e3655

    Article  Google Scholar 

  78. Fukuchi Y et al (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658

    Article  CAS  Google Scholar 

  79. Schwab KE et al (2008) Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod 23:934–943

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yelle, N., Bakhshinyan, D., Venugopal, C., Singh, S.K. (2019). Introduction to Brain Tumor Stem Cells. In: Singh, S., Venugopal, C. (eds) Brain Tumor Stem Cells. Methods in Molecular Biology, vol 1869. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8805-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8805-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8804-4

  • Online ISBN: 978-1-4939-8805-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics