Skip to main content

Optical Recording of Cellular Zinc Dynamics with Zinc-Finger-Based Biosensors

  • Protocol
  • First Online:
Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

In addition to serving as an essential structural component, zinc is also involved in intracellular and intercellular signaling pathways to impact a number of cellular functions. Genetically encoded zinc sensors that are specifically targeted to various subcellular compartments (ER, mitochondria, nucleus, plasma membrane, and vesicles) have been proven to provide accurate and sensitive visualization and quantification of zinc. Here we describe the methods to utilize both ratiometric and intensiometric genetically encoded zinc sensors designed based on zinc fingers for imaging and quantification of cellular free, labile zinc concentrations, [Zn2+]free. This chapter explains in detail how to quantify [Zn2+]free in live cells as well as how to monitor zinc influx in INS-1 cells stimulated with high glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201

    Article  CAS  PubMed  Google Scholar 

  2. Wilson M, Hogstrand C, Maret W (2012) Picomolar concentrations of free zinc(II) ions regulate receptor protein-tyrosine phosphatase beta activity. J Biol Chem 287:9322–9326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5:55–65

    Article  CAS  PubMed  Google Scholar 

  4. Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH (2001) Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 276:47524–47529

    Article  CAS  PubMed  Google Scholar 

  5. Faxen K, Salomonsson L, Adelroth P, Brzezinski P (2006) Inhibition of proton pumping by zinc ions during specific reaction steps in cytochrome c oxidase. Biochim Biophys Acta 1757:388–394

    Article  CAS  PubMed  Google Scholar 

  6. Prasad AS (1995) Zinc: an overview. Nutrition 11(1 Suppl):93–99

    PubMed  CAS  Google Scholar 

  7. Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 108:7351–7356

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qin Y, Sammond DW, Braselmann E, Carpenter MC, Palmer AE (2016) Development of an optical Zn2+ probe based on a single fluorescent protein. ACS Chem Biol 11:2744–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park JG, Qin Y, Galati DF, Palmer AE (2012) New sensors for quantitative measurement of mitochondrial Zn(2+). ACS Chem Biol 7:1636–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miranda JG, Weaver AL, Qin Y, Park JG, Stoddard CI, Lin MZ, Palmer AE (2012) New alternately colored FRET sensors for simultaneous monitoring of Zn(2)(+) in multiple cellular locations. PLoS One 7:e49371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A, Hughes S, Johnson PR, Bugliani M, Marchetti P, Turan B, Lyon AR, Merkx M, Rutter GA (2014) Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem Biol 9:2111–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evers TH, Appelhof MA, de Graaf-Heuvelmans PT, Meijer EW, Merkx M (2007) Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras. J Mol Biol 374:411–425

    Article  CAS  PubMed  Google Scholar 

  14. Hessels AM, Chabosseau P, Bakker MH, Engelen W, Rutter GA, Taylor KM, Merkx M (2015) eZinCh-2: a versatile, genetically encoded FRET sensor for cytosolic and Intraorganelle Zn(2+) imaging. ACS Chem Biol 10:2126–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiao W, Mooney M, Bird AJ, Winge DR, Eide DJ (2006) Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc Natl Acad Sci U S A 103:8674–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  CAS  PubMed  Google Scholar 

  17. Fiedler BL, Van Buskirk S, Carter KP, Qin Y, Carpenter MC, Palmer AE, Jimenez R (2017) Droplet microfluidic flow cytometer for sorting on transient cellular responses of genetically-encoded sensors. Anal Chem 89:711–719

    Article  CAS  PubMed  Google Scholar 

  18. Siau A, Huang X, Yam XY, Bob NS, Sun H, Rajapakse JC, Renia L, Preiser PR (2014) Identification of a new export signal in Plasmodium yoelii: identification of a new exportome. Cell Microbiol 16:673–686

    Article  CAS  PubMed  Google Scholar 

  19. Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361–9372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fudge, D.H., Black, R., Qin, Y. (2018). Optical Recording of Cellular Zinc Dynamics with Zinc-Finger-Based Biosensors. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics