Skip to main content

Design of a System for Monitoring Ubiquitination Activities of E2 Enzymes Using Engineered RING Finger Proteins

  • Protocol
  • First Online:
Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

Ubiquitination is a sequential cascade consisting of ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin-ligating (E3) enzymes. It controls numerous processes such as protein degradation, DNA repair, and signal transduction pathways. E2 enzymes are associated with a variety of diseases such as leukemia, breast cancer, lung cancer, and colorectal cancer. To date, the monitoring of E2 activity for cancer diagnosis is challenging due to its intricate cascade reaction. To surmount this hurdle, we have recently developed a novel strategy for monitoring E2 activities. Here, we describe the concise machinery of ubiquitination with artificial RING finger proteins (ARFs) functioning as E3 enzymes. This machinery enables the simplified monitoring of E2 activities. Furthermore, our system combines a signal accumulation ion-sensitive field-effect transistor biosensor with ARFs, allowing for real-time monitoring of the pathological conditions of cancer cells. The present methodology may lead to novel diagnostic techniques for cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haas AL, Siepmann TJ (1997) Pathways of ubiquitin conjugation. FASEB J 11:1257–1268

    Article  CAS  PubMed  Google Scholar 

  2. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  3. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  CAS  PubMed  Google Scholar 

  4. Varshavsky A (1997) The ubiquitin system. Trends Biochem Sci 22:383–387

    Article  CAS  PubMed  Google Scholar 

  5. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  6. Borden KL (2000) RING domains: master builders of molecular scaffolds? J Mol Biol 295:1103–1112

    Article  CAS  PubMed  Google Scholar 

  7. Freemont PS (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci 684:174–192

    Article  CAS  PubMed  Google Scholar 

  8. Takenokuchi M, Miyamoto K, Saigo K, Taniguchi T (2015) Bortezomib causes ER stress-related death of acute promyelocytic leukemia cells through excessive accumulation of PML–RARA. Anticancer Res 35:3307–3316

    PubMed  CAS  Google Scholar 

  9. Ueki T, Park JH, Nishidate T, Kijima K, Hirata K, Nakamura Y, Katagiri T (2009) Ubiquitination and downregulation of BRCA1 by ubiquitin-conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res 69(22):8752–8760

    Article  CAS  PubMed  Google Scholar 

  10. Snoek BC, de Wilt LH, Jansen G, Peters GJ (2013) Role of E3 ubiquitin ligases in lung cancer. World J Clin Oncol 4(3):58–69

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen S, Chen Y, Hu C, Jing H, Cao Y, Liu X (2010) Association of clinicopathological features with UbcH10 expression in colorectal cancer. J Cancer Res Clin Oncol 136:419–426

    Article  CAS  PubMed  Google Scholar 

  12. Liani E, Eyal A, Avraham E, Shemer R, Szargel R, Berg D, Bornemann A, Riess O, Ross CA, Rott R, Engelender S (2004) Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc Natl Acad Sci U S A 101:5500–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kramer OH, Muller S, Buchwald M, Reichardt S, Heinzel T (2008) Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J 22:1369–1379

    Article  CAS  PubMed  Google Scholar 

  14. Lee JT, Wheeler TC, Li L, Chin LS (2008) Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death. Hum Mol Genet 17:906–917

    Article  CAS  PubMed  Google Scholar 

  15. Brown NG, Watson ER, Weissmann F, Jarvis MA, VanderLinden R, Grace CR, Frye JJ, Qiao R, Dube P, Petzold G, Cho SE, Alsharif O, Bao J, Davidson IF, Zheng JJ, Nourse A, Kurinov I, Peters JM, Stark H, Schulman BA (2014) Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Mol Cell 56:246–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyamoto K (2012) Ubiquitination of an artificial RING finger without a substrate and a tag. J Pept Sci 18:135–139

    Article  CAS  PubMed  Google Scholar 

  17. Miyamoto K, Togiya K (2010) The creation of the artificial RING finger from the cross-brace zinc finger by alpha-helical region substitution. Biochem Biophys Res Commun 394:972–975

    Article  CAS  PubMed  Google Scholar 

  18. Pascual J, Martinez-Yamout M, Dyson HJ, Wright PE (2000) Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. J Mol Biol 304:723–729

    Article  CAS  PubMed  Google Scholar 

  19. Matsuzawa S, Li C, Ni CZ, Takayama S, Reed JC, Ely KR (2003) Structural analysis of Siah1 and its interactions with Siah-interacting protein (SIP). J Biol Chem 278:1837–1840

    Article  CAS  PubMed  Google Scholar 

  20. Miyamoto K (2014) Structural model of ubiquitin transfer onto an artificial RING finger as an E3 ligase. Sci Rep 4:6574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markson G, Kiel C, Hyde R, Brown S, Charalabous P, Bremm A, Semple J, Woodsmith J, Duley S, Salehi-Ashtiani K, Vidal M, Komander D, Serrano L, Lehner P, Sanderson CM (2009) Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. Genome Res 19:1905–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Wijk SJ, de Vries SJ, Kemmeren P, Huang A, Boelens R, Bonvin AM, Timmers HT (2009) A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol 5:295

    PubMed  PubMed Central  Google Scholar 

  23. Miyamoto K, Sumida M, Yuasa-Sunagawa M, Saito K (2017) Highly sensitive detection of E2 activity in ubiquitination using an artificial RING finger. J Pept Sci 23:222–227

    Article  CAS  PubMed  Google Scholar 

  24. Gu Y, Bouwman P, Greco D, Saarela J, Yadav B, Jonkers J, Kuznetsov SG (2014) Suppression of BRCA1 sensitizes cells to proteasome inhibitors. Cell Death Dis 5:e1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niewerth D, Dingjan I, Cloos J, Jansen G, Kaspers G (2013) Proteasome inhibitors in acute leukemia. Expert Rev Anticancer Ther 13:327–337

    Article  CAS  PubMed  Google Scholar 

  26. Ying M, Zhou X, Zhong L, Lin N, Jing H, Luo P, Yang X, Song H, Yang B, He Q (2012) Bortezomib sensitizes human acute myeloid leukemia cells to all-trans-retinoic acid-induced differentiation by modifying the RARalpha/STAT1 axis. Mol Cancer Ther 12:195–206

    Article  CAS  PubMed  Google Scholar 

  27. Finkel R, Clark MA, Cubeddu LX (2009) Lippincott’s illustrated reviews: pharmacology, fourth edition pharmacology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  28. van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM (2010) Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol 188:83–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu X, Zhang W, Font-Burgada J, Palmer T, Hamil AS, Biswas SK, Poidinger M, Borcherding N, Xie Q, Ellies LG, Lytle NK, Wu LW, Fox RG, Yang J, Dowdy SF, Reya T, Karin M (2014) Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-p38 MAP kinase cascade. Proc Natl Acad Sci U S A 111:13870–13875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE (2001) Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol 8:833–837

    Article  CAS  PubMed  Google Scholar 

  31. Katoh S, Hong C, Tsunoda Y, Murata K, Takai R, Minami E, Yamazaki T, Katoh E (2003) High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. J Biol Chem 278:15341–15348

    Article  CAS  PubMed  Google Scholar 

  32. Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE (2006) Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol 363:433–450

    Article  CAS  PubMed  Google Scholar 

  33. Miyamoto K, Uechi A, Saito K (2017) The zinc finger domain of RING finger protein 141 reveals a unique RING fold. Protein Sci 26:1681–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katoh S, Tsunoda Y, Murata K, Minami E, Katoh E (2005) Active site residues and amino acid specificity of the ubiquitin carrier protein-binding RING-H2 finger domain. J Biol Chem 280:41015–41024

    Article  CAS  PubMed  Google Scholar 

  35. Scheel H, Hofmann K (2003) No evidence for PHD fingers as ubiquitin ligases. Trends Cell Biol 13:285–287; author reply 287–288

    Article  CAS  PubMed  Google Scholar 

  36. Aravind L, Iyer LM, Koonin EV (2003) Scores of RINGS but no PHDs in ubiquitin signaling. Cell Cycle 2:123–126

    Article  CAS  PubMed  Google Scholar 

  37. Chakravarty S, Zeng L, Zhou MM (2009) Structure and site-specific recognition of histone H3 by the PHD finger of human autoimmune regulator. Structure 17:670–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442:100–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Szargel R, Rott R, Eyal A, Haskin J, Shani V, Balan L, Wolosker H, Engelender S (2009) Synphilin-1A inhibits seven in absentia homolog (SIAH) and modulates alpha-synuclein monoubiquitylation and inclusion formation. J Biol Chem 284:11706–11716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by A-STEP from Japan Science and Technology Agency (JST), a Grant-in-Aid for Scientific Research (KAKENHI 26430147), Takeda Science Foundation, Sanyo Chemical Industries Foundation, and Nakatani Foundation.

Author contributions

K.M. designed this study. K.M. and K.S. wrote the main manuscript text and prepared all the figures.

Competing interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhide Miyamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miyamoto, K., Saito, K. (2018). Design of a System for Monitoring Ubiquitination Activities of E2 Enzymes Using Engineered RING Finger Proteins. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics