Skip to main content

Enhanced Manipulation of Human Mitochondrial DNA Heteroplasmy In Vitro Using Tunable mtZFN Technology

  • Protocol
  • First Online:
Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

As a platform capable of mtDNA heteroplasmy manipulation, mitochondrially targeted zinc-finger nuclease (mtZFN) technology holds significant potential for the future of mitochondrial genome engineering, in both laboratory and clinic. Recent work highlights the importance of finely controlled mtZFN levels in mitochondria, permitting far greater mtDNA heteroplasmy modification efficiencies than observed in early applications. An initial approach, differential fluorescence-activated cell sorting (dFACS), allowing selection of transfected cells expressing various levels of mtZFN, demonstrated improved heteroplasmy modification. A further, key optimization has been the use of an engineered hammerhead ribozyme as a means for dynamic regulation of mtZFN expression, which has allowed the development of a unique isogenic cellular model of mitochondrial dysfunction arising from mutations in mtDNA, known as mTUNE. Protocols detailing these transformative optimizations are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F et al (1981) Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  2. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Nat Rev Dis Primers 2:16080

    Article  PubMed  Google Scholar 

  3. Srivastava S, Moraes CT (2001) Hum Mol Genet 10:3093–3099

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, Maruyama W, Naoi M, Ibi T, Sahashi K et al (2002) J Biomed Sci 9:534–541

    PubMed  CAS  Google Scholar 

  5. Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Proc Natl Acad Sci U S A 102:14392–14397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bacman SR, Williams SL, Duan D, Moraes CT (2012) Gene Ther 19:1101–1106

    Article  CAS  PubMed  Google Scholar 

  7. Bacman SR, Williams SL, Garcia S, Moraes CT (2010) Gene Ther 17:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Gene Ther 14:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, Williams SL, Moraes CT (2015) Mol Ther 23:1592–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bacman S, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Nat Med 19:1111–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, Sugawara A, Okamura D, Tsunekawa Y, Wu J et al (2015) Cell 161:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phillips AF, Millet AR, Tigano M, Dubois SM, Crimmins H, Babin L, Charpentier M, Piganeau M, Brunet E, Sfeir A (2017) Mol Cell 65:527–538.e6

    Article  CAS  PubMed  Google Scholar 

  13. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Nucleic Acids Res 36:3926–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minczuk M, Kolasinska-Zwierz P, Murphy MP, Papworth MA (2010) Nat Protoc 5:342–356

    Article  CAS  PubMed  Google Scholar 

  15. Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M (2014) EMBO Mol Med 6:458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gammage PA, Gaude E, Van Haute L, Rebelo-Guiomar P, Jackson CB, Rorbach J, Pekalski ML, Robinson AJ, Charpentier M, Concordet JP et al (2016) Nucleic Acids Res 44:7804–7816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gammage PA, Van Haute L, Minczuk M (2016) Methods Mol Biol 1351:145–462

    Article  CAS  PubMed  Google Scholar 

  18. Beilstein K, Wittmann A, Grez M, Suess B (2015) ACS Synth Biol 4:526–534

    Article  CAS  PubMed  Google Scholar 

  19. Hao H, Morrison LE, Moraes CT (1999) Hum Mol Genet 8:1117–1124

    Article  CAS  PubMed  Google Scholar 

  20. Gaude E et al (2018) Mol Cell 69:581–593 PMID:29452638

    Google Scholar 

  21. Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF et al (2006) Nat Protoc 1:1637–1652. PMID:29452638

    Google Scholar 

  22. Carroll D, Morton JJ, Beumer KJ, Segal DJ (2006) Nat Protoc 1:1329–1341

    Article  CAS  PubMed  Google Scholar 

  23. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA et al (2008) Mol Cell 31:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim S, Lee MJ, Kim H, Kang M, Kim JS (2011) Nat Methods 8:7

    Article  CAS  PubMed  Google Scholar 

  25. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2007) Nucleic Acids Res 35:W599–W605

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fu F, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, Miller L, Voytas DF (2009) Nucleic Acids Res 37:D279–D283

    Article  CAS  PubMed  Google Scholar 

  27. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y et al (2011) Nat Methods 8:67–69

    Article  CAS  PubMed  Google Scholar 

  28. King MP, Attardi G (1989) Science 246:500–503

    Article  CAS  PubMed  Google Scholar 

  29. King MP, Attadi G (1996) Methods Enzymol 264:313–334

    Article  CAS  PubMed  Google Scholar 

  30. Manfredi G, Gupta N, Vazquez-Memije ME, Sadlock JE, Spinazzola A, De Vivo DC, Schon EA (1999) J Biol Chem 274:9386–9391

    Article  CAS  PubMed  Google Scholar 

  31. Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, Jovaisaite V, Frochaux MV, Quiros PM, Deplancke B et al (2015) Cell Rep 10:1681–1691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Medical Research Council, UK (MC_U105697135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Payam A. Gammage or Michal Minczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gammage, P.A., Minczuk, M. (2018). Enhanced Manipulation of Human Mitochondrial DNA Heteroplasmy In Vitro Using Tunable mtZFN Technology. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics