Skip to main content

Integrated Multimodal Evaluation of Genotoxicity in ZFN-Modified Primary Human Cells

  • Protocol
  • First Online:
  • 1078 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

Iatrogenic adverse events in clinical trials of retroviral vector-mediated gene-corrected cells have prioritized the urgent need for more comprehensive and stringent assessment of potentially genotoxic off-target alterations and the biosafety of cells intended for therapeutic applications. Genome editing tools such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 nuclease systems are being investigated as safer and efficient alternatives for site-directed genome modification. Using site-specific integration into the AAVS1 locus of primary human cells as an example, we present an integrated approach to multimodal investigation of off-target alterations and an evaluation of potential genotoxicity induced by ZFN-mediated integration of a therapeutic transgene.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Collins M, Thrasher A (2015) Gene therapy: progress and predictions. Proc Biol Sci 282:20143003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaufmann KB, Büning H, Galy A et al (2013) Gene therapy on the move. EMBO Mol Med 5:1642–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papapetrou EP, Schambach A (2016) Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439

    Article  CAS  PubMed  Google Scholar 

  5. Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  6. Doyon Y, Vo TD, Mendel MC et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  PubMed  Google Scholar 

  7. Szczepek M, Brondani V, Buchel J et al (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  8. Guo J, Gaj T, Barbas CF 3rd (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hendel A, Fine EJ, Bao G et al (2015) Quantifying on- and off-target genome editing. Trends Biotechnol 33:132–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35:95–104

    Article  CAS  PubMed  Google Scholar 

  11. Hockemeyer D, Soldner F, Beard C et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  13. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koboldt DC, Zhang Q, Larson DE et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cradick TJ, Ambrosini G, Iseli C et al (2011) ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics 12:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeitouni B, Boeva V, Janoueix-Lerosey I et al (2010) SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics 26:1895–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen K, Wallis JW, McLellan MD et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mijuskovic M, Brown SM, Tang Z et al (2012) A streamlined method for detecting structural variants in cancer genomes by short read paired-end sequencing. PLoS One 7:e48314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sivalingam J, Krishnan S, Ng WH et al (2010) Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther 18:1346–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sivalingam J, Kenanov D, Han H et al (2016) Multidimensional genome-wide analyses show accurate FVIII integration by ZFN in primary human cells. Mol Ther 24:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carroll D, Morton JJ, Beumer KJ et al (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1:1329–1341

    Article  CAS  PubMed  Google Scholar 

  25. Porteus M (2008) Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol 435:47–61

    Article  CAS  PubMed  Google Scholar 

  26. Sander JD, Maeder ML, Joung JK (2011) Engineering designer nucleases with customized cleavage specificities. Curr Protoc Mol Biol Chapter 12:Unit12.13 1–19

    Google Scholar 

  27. Fujii W, Kano K, Sugiura K et al (2013) Repeatable construction method for engineered zinc finger nuclease based on overlap extension PCR and TA-cloning. PLoS One 8:e59801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by the National Medical Research Council (grant CIRG/1326/2012), National Cancer Centre and CellResearch Corporation (all in Singapore). D.K. and S.M.S. were supported by the Agency for Science, Technology and Research (A*STAR), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaichandran Sivalingam or Dimitar Kenanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sivalingam, J. et al. (2018). Integrated Multimodal Evaluation of Genotoxicity in ZFN-Modified Primary Human Cells. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics