Skip to main content

PRDM14, a Zinc Finger Protein, Regulates Cancer Stemness

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

PRDI-BF1 and RIZ homology (PR) domain zinc finger protein 14 (PRDM14) contains a PR domain related to the SET methyltransferase domain and zinc finger motifs. PRDM14 maintains stemness in embryonic stem cells and primordial germ cells via epigenetic mechanisms. PRDM14, however, is not expressed in normal differentiated tissues. We and other groups previously reported that PRDM14 expression is markedly higher in some types of cancers compared to the corresponding normal tissues. PRDM14 confers stem cell-like characteristics upon cancer cells, such as sphere formation, dye efflux, chemotherapy resistance, proliferation, and distant metastasis. Cancer stem cells (CSCs) are thought to be responsible for tumor initiation, drug and radiation resistance, invasive growth, metastasis, and tumor relapse, which are the primary causes of cancer-related deaths. Because CSCs are also thought to be resistant to conventional therapies, an effective and novel therapeutic approach for CSCs is imperative.

RNAi silencing of PRDM14 expressed by breast and pancreatic cancer cells reduced tumor size and distant metastasis of these cells in nude mice. Inhibition of PRDM14 expression by cancer cells may be an effective and radical therapy for solid cancers. In this chapter, we discuss methods for studying CSC-like properties in cancer cells and describe the use of siRNA with a drug delivery system by systemic injection in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mzoughi S, Tan YX, Low D et al (2016) The role of PRDMs in cancer: one family, two sides. Curr Opin Genet Dev 36:83–91

    Article  CAS  PubMed  Google Scholar 

  2. Bouhouche N, Syvanen M, Kado CI (2000) The origin of prokaryotic C2H2 zinc finger regulators. Trends Microbiol 8:77–81

    Article  CAS  PubMed  Google Scholar 

  3. Brayer KJ, Segal DJ (2008) Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 50:111–131

    Article  CAS  PubMed  Google Scholar 

  4. Chia NY, Chan YS, Feng B et al (2010) A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468:316–320

    Article  CAS  PubMed  Google Scholar 

  5. Yamaji M et al (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40:1016–1022

    Article  CAS  PubMed  Google Scholar 

  6. Yamaji M, Seki Y, Kurimoto K et al (2013) PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12:368–382

    Article  CAS  PubMed  Google Scholar 

  7. Nishikawa N, Toyota M, Suzuki H et al (2007) Gene amplification and overexpression of PRDM14 in breast cancers. Cancer Res 67:9649–9657

    Article  CAS  PubMed  Google Scholar 

  8. Dettman EJ, Justice MJ (2008) The zinc finger SET domain gene Prdm14 is overexpressed in lymphoblastic lymphomas with retroviral insertions at Evi32. PLoS One 3:e3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taniguchi H, Hoshino D, Moriya C et al (2017) Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer. Oncotarget 8:46856–46874

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moriya C, Taniguchi H, Miyata K et al (2017) Inhibition of PRDM14 expression in pancreatic cancer suppresses cancer stem-like properties and liver metastasis in mice. Carcinogenesis 38:638–648

    Article  CAS  PubMed  Google Scholar 

  11. Taniguchi H, Moriya C, Igarashi H et al (2016) Cancer stem cells in human gastrointestinal cancer. Cancer Sci 107:1556–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  14. Ui-Tei K, Naito Y, Zenno S et al (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 36:2136–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pittella F, Cabral H, Maeda Y et al (2014) Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release 178:18–24

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu H, Hori Y, Kaname S et al (2010) siRNA-based therapy ameliorates glomerulonephritis. J Am Soc Nephrol 21:622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728

    Article  CAS  Google Scholar 

  18. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  Google Scholar 

  19. Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  CAS  PubMed  Google Scholar 

  20. Doyle L, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Research Promotion, Practical Research for Innovative Cancer Control, Ministry of Health, Labour and Welfare and Japan Agency for Medical Research and Development (AMED). We wish to thank Prof. Kazunori Kataoka from the Innovation Center of NanoMedicine for DDSs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Taniguchi, H., Imai, K. (2018). PRDM14, a Zinc Finger Protein, Regulates Cancer Stemness. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics