Skip to main content

Isolation and Characterization of Methionine-Independent Clones from Methionine-Dependent Cancer Cells

  • Protocol
  • First Online:
Methionine Dependence of Cancer and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1866))

Abstract

Unlike normal cells, transformed cells are unable to grow when methionine in the growth media is restricted. Reversion to methionine independence is a rare event in transformed and malignant cells. Methionine-independent revertants provide an excellent system to identify metabolic signatures and molecular characteristics associated with methionine dependency of transformed cells. Revertants maintain the genetic background and general growth behavior of the parental cell line, except that they proliferate under methionine restriction such as in methionine-free media supplemented with homocysteine. Here we describe a general approach to generate methionine-independent revertants using the example of the triple-negative breast cancer cell line MDA-MB-468. To validate and characterize reversion we describe assays to evaluate cell proliferation and anchorage-independent growth in soft agar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chello PL, Bertino JR (1973) Dependence of 5 methyltetrahydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res 33:1898–1904

    CAS  PubMed  Google Scholar 

  2. Halpern BC, Clark BR, Hardy DN et al (1974) The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci U S A 71:1133–1136. https://doi.org/10.1073/pnas.71.4.1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527. https://doi.org/10.1073/pnas.73.5.1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stern PH, Wallace CD, Hoffman RM (1984) Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119:29–34

    Article  CAS  Google Scholar 

  5. Booher K, Lin DW, Borrego SL, Kaiser P (2012) Downregulation of Cdc6 and pre-replication complexes in response to methionine stress in breast cancer cells. Cell Cycle 11:4414–4423

    Article  CAS  Google Scholar 

  6. Lin DW, Chung BP, Kaiser P (2013) S-adenosylmethionine limitation induces p38 mitogen-activated protein kinase and triggers cell cycle arrest in G1. J Cell Sci 127:50–59

    Article  Google Scholar 

  7. Hoffman RM, Jacobsen SJ (1980) Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci U S A 77:7306–7310

    Article  CAS  Google Scholar 

  8. Sugimura T, Birnbaum SM, Winitz M et al (1959) Quantitative nutritional studies with water-soluble, chemically defined diets. VIII. The forced feeding of diets each lacking in one essential amino acid. Arch Biochem Biophys 81:448–455

    Article  CAS  Google Scholar 

  9. Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31

    Article  CAS  Google Scholar 

  10. Mecham JO, Rowitch D, Wallace CD et al (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434. https://doi.org/10.1016/0006-291X(83)91218-4

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman RM, Jacobsen SJ, Erbe RW (1979) Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci U S A 76:1313–1317

    Article  CAS  Google Scholar 

  12. Hoffman RM, Jacobsen SJ, Erbe RW (1978) Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82:228–234. https://doi.org/10.1016/0006-291X(78)90600-9

    Article  CAS  PubMed  Google Scholar 

  13. Borrego SL, Fahrmann J, Datta R et al (2016) Metabolic changes associated with methionine stress sensitivity in MDA-MB-468 breast cancer cells. Cancer Metab 4:9. https://doi.org/10.1186/s40170-016-0148-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mori S, Chang JT, Andrechek ER et al (2010) An anchorage-independent cell growth signature identifies tumors with metastic potential. Oncogene 28:2796–2805. https://doi.org/10.1038/onc.2009.139.An

    Article  Google Scholar 

  15. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  16. Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  Google Scholar 

  17. Tan Y, Xu M, Hoffman RM (2010) Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro. Anticancer Res 30:1041–1046

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borrego, S.L., Lin, DW., Kaiser, P. (2019). Isolation and Characterization of Methionine-Independent Clones from Methionine-Dependent Cancer Cells. In: Hoffman, R. (eds) Methionine Dependence of Cancer and Aging. Methods in Molecular Biology, vol 1866. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8796-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8795-5

  • Online ISBN: 978-1-4939-8796-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics