Skip to main content

Targeted Electroporation in the CNS in Xenopus Embryos

  • Protocol
  • First Online:
Xenopus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

Electroporation allows targeting of genetic materials (e.g., DNA, RNA, antisense morpholinos) to the tissue of interest with high spatial and temporal specificity. Here, we describe a highly efficient and reproducible electroporation strategy for targeting the central nervous system in Xenopus. This versatile approach can be combined with live imaging or other existing experimental procedures to aid the investigation of different research questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vize PD, Melton DA, Hemmati-Brivanlou A, RM H (1991) Assays for gene function in developing Xenopus embryos. Methods Cell Biol 36:367–387

    Article  CAS  Google Scholar 

  2. Konopacki FA, Wong HH, Dwivedy A, Bellon A, Blower MD, Holt CE (2016) ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol 6(4):150218. https://doi.org/10.1098/rsob.150218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roque CG, Wong HH, Lin JQ, Holt CE (2016) Tumor protein Tctp regulates axon development in the embryonic visual system. Development 143(7):1134–1148. https://doi.org/10.1242/dev.131060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang S, Li J, Lea R, Vleminckx K, Amaya E (2014) Fezf2 promotes neuronal differentiation through localised activation of Wnt/beta-catenin signalling during forebrain development. Development 141(24):4794–4805. https://doi.org/10.1242/dev.115691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falk J, Konopacki FA, Zivraj KH, Holt CE (2014) Rab5 and Rab4 regulate axon elongation in the Xenopus visual system. J Neurosci 34(2):373–391. https://doi.org/10.1523/JNEUROSCI.0876-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE (2007) Electroporation of cDNA/morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol 7:107. https://doi.org/10.1186/1471-213X-7-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong HH, Lin JQ, Strohl F, Roque CG, Cioni JM, Cagnetta R, Turner-Bridger B, Laine RF, Harris WA, Kaminski CF, Holt CE (2017) RNA docking and local translation regulate site-specific axon remodeling in vivo. Neuron 95(4):852–868 e8. https://doi.org/10.1016/j.neuron.2017.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leung LC, Urbancic V, Baudet ML, Dwivedy A, Bayley TG, Lee AC, Harris WA, Holt CE (2013) Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat Neurosci 16(2):166–173. https://doi.org/10.1038/nn.3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoon BC, Jung H, Dwivedy A, O'Hare CM, Zivraj KH, Holt CE (2012) Local translation of extranuclear lamin B promotes axon maintenance. Cell 148(4):752–764. https://doi.org/10.1016/j.cell.2011.11.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baudet ML, Zivraj KH, Abreu-Goodger C, Muldal A, Armisen J, Blenkiron C, Goldstein LD, Miska EA, Holt CE (2011) miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nat Neurosci 15(1):29–38. https://doi.org/10.1038/nn.2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 20(1):19–32. https://doi.org/10.1016/j.devcel.2010.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drinjakovic J, Jung H, Campbell DS, Strochlic L, Dwivedy A, Holt CE (2010) E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65(3):341–357. https://doi.org/10.1016/j.neuron.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB (2009) A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 136(19):3289–3299. https://doi.org/10.1242/dev.040451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalous A, Stake JI, Yisraeli JK, Holt CE (2014) RNA-binding protein Vg1RBP regulates terminal arbor formation but not long-range axon navigation in the developing visual system. Dev Neurobiol 74(3):303–318. https://doi.org/10.1002/dneu.22110

    Article  CAS  PubMed  Google Scholar 

  15. Strohl F, Lin JQ, Laine RF, Wong HH, Urbancic V, Cagnetta R, Holt CE, Kaminski CF (2017) Single molecule translation imaging visualizes the dynamics of local beta-actin synthesis in retinal axons. Sci Rep 7(1):709. https://doi.org/10.1038/s41598-017-00695-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166(1):181–192. https://doi.org/10.1016/j.cell.2016.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bellon A, Iyer A, Bridi S, Lee FC, Ovando-Vazquez C, Corradi E, Longhi S, Roccuzzo M, Strohbuecker S, Naik S, Sarkies P, Miska E, Abreu-Goodger C, Holt CE, Baudet ML (2017) miR-182 regulates Slit2-mediated axon guidance by modulating the local translation of a specific mRNA. Cell Rep 18(5):1171–1186. https://doi.org/10.1016/j.celrep.2016.12.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoon BC, Zivraj KH, Strochlic L, Holt CE (2012) 14-3-3 proteins regulate retinal axon growth by modulating ADF/cofilin activity. Dev Neurobiol 72(4):600–614. https://doi.org/10.1002/dneu.20955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin AC, Tan CL, Lin CL, Strochlic L, Huang YS, Richter JD, Holt CE (2009) Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev 4:8. https://doi.org/10.1186/1749-8104-4-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank R. Cagnetta and M. Eldred for critical reading of the manuscript. This work was supported by Cambridge Trust, Croucher Foundation, Sir Edward Youde Memorial Fund (H.H.W), Wellcome Trust Programme Grant (085314/Z/08/Z), and ERC Advanced Grant (322817) (C.E.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Holt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wong, H.HW., Holt, C.E. (2018). Targeted Electroporation in the CNS in Xenopus Embryos. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics