Skip to main content

Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis

  • Protocol
  • First Online:
Xenopus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

The targeted nuclease revolution (ZFN, TALEN, and CRISPR/Cas9) has led to a myriad of reports describing genotyping methodologies for genome edited founders (F0—crispants) and their offspring (F1). As such, choosing a specific genotyping methodology for your Xenopus CRISPR/Cas9 experiments can be challenging. In this chapter we will discuss, with emphasis on Xenopus tropicalis (X. tropicalis), different methods for assessing genome editing efficiencies within F0 CRISPR/Cas9 founders and for identification of their hetero-, compound hetero-, and homozygous mutant F1 offspring. For F0 crispants, we will provide the protocols and the respective (dis)advantages of genotyping with heteroduplex mobility assay (HMA), subclone Sanger sequencing, and sequence trace decomposition. Furthermore, we provide a previously unpublished pipe-line for rapid genotyping of F1 offspring—high resolution melting analysis (HRMA) and sequence trace decomposition—procured from breeding with F0 crispants. As such, we report here the current state-of-the-art cost- and time-effective approaches to perform genotyping of CRISPR/Cas9 experiments for the Xenopus tropicalis researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young JJ, Cherone JM, Doyon Y et al (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108:7052–7057. https://doi.org/10.1073/pnas.1102030108

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lei Y, Guo X, Liu Y et al (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109:17484–17489. https://doi.org/10.1073/pnas.1215421109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakayama T, Fish MB, Fisher M et al (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843. https://doi.org/10.1002/dvg.22720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qiu P, Shandilya H, D’Alessio JM et al (2004) Mutation detection using surveyor nuclease. BioTechniques 36:702–707

    Article  CAS  PubMed  Google Scholar 

  5. Babon JJ, McKenzie M, Cotton RGH (2003) The use of Resolvases T4 endonuclease VII and T7 endonuclease I in mutation detection. Mol Biotechnol 23:73–82. https://doi.org/10.1385/MB:23:1:73

    Article  CAS  PubMed  Google Scholar 

  6. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168–e168. https://doi.org/10.1093/nar/gku936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhattacharya D, Marfo CA, Li D et al (2015) CRISPR/Cas9: an inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol 408:196–204. https://doi.org/10.1016/j.ydbio.2015.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas HR, Percival SM, Yoder BK et al (2014) High-throughput genome editing and Phenotyping facilitated by high resolution melting curve analysis. PLoS One 9:e114632. https://doi.org/10.1371/journal.pone.0114632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Upchurch DA, Shankarappa R, Mullins JI (2000) Position and degree of mismatches and the mobility of DNA heteroduplexes. Nucleic Acids Res 28:E69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vouillot L, Thélie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5:407–415. https://doi.org/10.1534/g3.114.015834

    Article  CAS  PubMed Central  Google Scholar 

  11. Zhu X, Xu Y, Yu S et al (2015) An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4:6420. https://doi.org/10.1038/srep06420

    Article  CAS  Google Scholar 

  12. Naert T, Van Nieuwenhuysen T, Vleminckx K (2017) TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models. Genesis 55. https://doi.org/10.1002/dvg.23005

    Article  Google Scholar 

  13. DeLay BD, Corkins ME, Hanania HL et al (2018) Tissue-specific gene inactivation in Xenopus laevis: knockout of lhx1 in the kidney with CRISPR/Cas9. Genetics 208(2):673–686. https://doi.org/10.1534/genetics.117.300468

    Article  CAS  PubMed  Google Scholar 

  14. Boel A, Steyaert W, De Rocker N et al (2016) BATCH-GE: Batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep 6:30330. https://doi.org/10.1038/srep30330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsiau T, Maures T, Waite K et al (2018) Inference of CRISPR edits from sanger trace data. bioRxiv. https://doi.org/10.1101/251082

  16. Ota S, Hisano Y, Muraki M et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458. https://doi.org/10.1111/gtc.12050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakayama T, Blitz IL, Fish MB et al (2014) Cas9-based genome editing in Xenopus tropicalis. Methods Enzymol 546:355–375. https://doi.org/10.1016/B978-0-12-801185-0.00017-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergkessel M, Guthrie C (2013) Colony PCR. Methods Enzymol 529:299–309

    Article  CAS  PubMed  Google Scholar 

  19. Lin G, Slack JMW (2008) Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Dev Biol 316:323–335. https://doi.org/10.1016/j.ydbio.2008.01.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tom Van Nieuwenhuysen for the initial establishment of the HMA assay and the subcloning/Sanger sequencing methodologies within the research unit. Furthermore, the authors would like to thank Lana Hellebaut for critical proofreading of this chapter. Research in the authors’ laboratory is supported by the Research Foundation – Flanders (FWO-Vlaanderen) (grants G0A1515N and G029413 N), by the Belgian Science Policy (Interuniversity Attraction Poles - IAP7/07) and by the Concerted Research Actions from Ghent University (BOF15/GOA/011). Further support was obtained by the Hercules Foundation, Flanders (grant AUGE/11/14) and the Desmoid Tumor Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Vleminckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naert, T., Vleminckx, K. (2018). Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics