Skip to main content
Book cover

Xenopus pp 251–263Cite as

Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

The Xenopus embryonic epidermis serves as a model to investigate the development, cell biology, and regeneration of vertebrate mucociliary epithelia. Its fast development as well as the ease of manipulation and analysis in this system facilitate novel approaches and sophisticated experiments addressing the principle mechanisms of mucociliary signaling, transcriptional regulation, and morphogenesis. This protocol describes how cell type composition can be manipulated and analyzed, and how mucociliary organoids can be generated and used for “omics”-type of experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ibanez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 12:27R–235R. https://doi.org/10.1093/hmg/ddg061

    Article  CAS  Google Scholar 

  2. Robinson M, Bye PTB (2002) Mucociliary clearance in cystic fibrosis. Pediatr Pulmonol 33:293–306. https://doi.org/10.1002/ppul.10079

    Article  PubMed  Google Scholar 

  3. Crystal RG, Randell SH, Engelhardt JF et al (2008) Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc 5:772–777. https://doi.org/10.1513/pats.200805-041HR

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walentek P, Quigley IK (2017) What we can learn from a tadpole about ciliopathies and airway diseases: using systems biology in Xenopus to study cilia and mucociliary epithelia. Genes J Genet Dev:1–13. https://doi.org/10.1002/dvg.23001

    Article  Google Scholar 

  5. Brooks ER, Wallingford JB (2014) Multiciliated cells. Curr Biol 24:R973–R982. https://doi.org/10.1016/j.cub.2014.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deblandre GA, Wettstein DA, Koyano-nakagawa N, Kintner C (1999) A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126:4715–4728

    CAS  PubMed  Google Scholar 

  7. Stubbs JL, Vladar EK, Axelrod JD, Kintner C (2012) Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat Cell Biol 14:1–10. https://doi.org/10.1038/ncb2406

    Article  CAS  Google Scholar 

  8. Quigley IK, Stubbs JL, Kintner C (2011) Specification of ion transport cells in the Xenopus larval skin. Development 714:705–714. https://doi.org/10.1242/dev.055699

    Article  CAS  Google Scholar 

  9. Harland RM (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36:685–695

    Article  CAS  Google Scholar 

  10. Stubbs JL, Oishi I, Izpisúa Belmonte JC et al (2008) The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 40:1454–1460. https://doi.org/10.1038/ng.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walentek P, Bogusch S, Thumberger T et al (2014) A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles. Development 141:1526–1533. https://doi.org/10.1242/dev.102343

    Article  CAS  PubMed  Google Scholar 

  12. Hayes JM, Kim SK, Abitua PB et al (2007) Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev Biol 312:115–130. https://doi.org/10.1016/j.ydbio.2007.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cibois M, Luxardi G, Chevalier B et al (2015) BMP signalling controls the construction of vertebrate mucociliary epithelia. Development:1–12. https://doi.org/10.1242/dev.118679

    Article  CAS  Google Scholar 

  14. Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  15. Campbell EP, Quigley IK, Kintner C (2017) Correction: Foxn4 promotes gene expression required for the formation of multiple motile cilia. Development 144:731–731. https://doi.org/10.1242/dev.149567

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dubaissi E, Rousseau K, Lea R et al (2014) A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 141:1514–1525. https://doi.org/10.1242/dev.102426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walentek P, Beyer T, Thumberger T et al (2012) ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left-right development. Cell Rep 1:516–527. https://doi.org/10.1016/j.celrep.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  18. Walentek P, Beyer T, Hagenlocher C et al (2015) ATP4a is required for development and function of the Xenopus mucociliary epidermis—a potential model to study proton pump inhibitor-associated pneumonia. Dev Biol 408(2):292–304. https://doi.org/10.1016/j.ydbio.2015.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walentek P, Quigley IK, Sun DI et al (2016) Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis. eLife 5:1–24. https://doi.org/10.7554/eLife.17557

    Article  Google Scholar 

  20. Werner ME, Mitchell BJ (2013) Using Xenopus skin to study cilia development and function. Methods Enzymol 525:191–217. https://doi.org/10.1016/B978-0-12-397944-5.00010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song R, Walentek P, Sponer N et al (2014) MiR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 510(7503):115–120. https://doi.org/10.1038/nature13413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

PW and the Walentek lab are funded by the Deutsche Forschungsgemeinschaft (DFG) through the Emmy Noether Programme grant WA 3365/2-1. PW thanks the Xenopus community and resources for continuous support of his research work, in especially the National Xenopus Resource (RRID:SCR_013731) and Xenbase (RRID:SCR_003280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Walentek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Walentek, P. (2018). Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics