Skip to main content

Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors

  • Protocol
  • First Online:
Xenopus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

The recent advent of CRISPR/Cas9 as a straightforward genome editing tool has allowed the establishment of the first bona fide genetic cancer models within the diploid aquatic model organism Xenopus tropicalis (X. tropicalis). Within this chapter, we demonstrate the methods for targeting tumor suppressors with the CRISPR/Cas9 system in the developing X. tropicalis embryo. We further illustrate genotyping and phenotyping of the resulting tumor-bearing F0 mosaic mutant animals (crispants). We focus in detail on the histopathological analysis of cancer neoplasms, the methodology to illustrate high proliferative index by proliferation marker immunofluorescence and how to isolate specific (tumor) cell populations by laser capture microdissection. As such, the described pipeline allows for rapid establishment of novel cancer models by CRISPR/Cas9 targeting of established tumor suppressor genes, or novel candidates obtained from clinical data. In conclusion, we thus provide the methodology for modeling human cancer with the highly efficient CRISPR/Cas9 system in F0 X. tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya D, Marfo CA, Li D et al (2015) CRISPR/Cas9: an inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol 408:196–204. https://doi.org/10.1016/j.ydbio.2015.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakayama T, Fish MB, Fisher M et al (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843. https://doi.org/10.1002/dvg.22720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hellsten U, Harland RM, Gilchrist MJ et al (2010) The genome of the western clawed frog Xenopus tropicalis. Science (80) 328:633–636. https://doi.org/10.1126/science.1183670

    Article  CAS  Google Scholar 

  4. Guo X, Zhang T, Hu Z et al (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141(3):707–714

    Article  CAS  PubMed  Google Scholar 

  5. Van Nieuwenhuysen T, Naert T, Tran HT et al (2015) TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis. Oncoscience 2. https://doi.org/10.18632/oncoscience.166

    Article  PubMed  PubMed Central  Google Scholar 

  6. Naert T, Colpaert R, Van Nieuwenhuysen T et al (2016) CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep 6. https://doi.org/10.1038/srep35264

  7. Naert T, Van Nieuwenhuysen T, Vleminckx K (2017) TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models. Genesis 55:e23005. https://doi.org/10.1002/dvg.23005

    Article  CAS  Google Scholar 

  8. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. https://doi.org/10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson DR, Wu Y-M, Lonigro RJ, et al (2017) Integrative clinical genomics of metastatic cancer. doi:https://doi.org/10.1038/nature23306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Northcott PA, Buchhalter I, Morrissy AS et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317. https://doi.org/10.1038/nature22973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scarpa A, Chang DK, Nones K et al (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543:65–71. https://doi.org/10.1038/nature21063

    Article  CAS  PubMed  Google Scholar 

  12. Morrissy AS, Garzia L, Shih DJH et al (2016) Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529:351–357. https://doi.org/10.1038/nature16478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwong LN, Dove WF (2009) APC and its modifiers in colon cancer. Adv Exp Med Biol 656:85–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319

    Article  CAS  PubMed  Google Scholar 

  15. Weber J, Öllinger R, Friedrich M et al (2015) CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A 112:13982–13987. https://doi.org/10.1073/pnas.1512392112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hussaini SMQ, Jun H, Cho CH et al (2013) Heat-induced antigen retrieval: an effective method to detect and identify progenitor cell types during adult hippocampal neurogenesis. J Vis Exp. https://doi.org/10.3791/50769

Download references

Acknowledgments

The authors would like to acknowledge Tarryn Porter (tarryn.porter@sanger.ac.uk) for allowing reuse of a figure by her hand (top part of Fig. 1). Furthermore, the authors would like to thank Dr. Tom van Nieuwenhuysen for the collaborative effort in setting up the PCNA immunofluorescence methodologies. Furthermore, the authors would like to thank Trees Lepez and prof. Dieter Deforce for the initial tutorial on how to use the PALM LCM system. Finally, the authors would like to thank Dieter Tulkens and Marjolein Carron for critical proof-reading of this chapter. Research in the authors’ laboratory is supported by the Research Foundation—Flanders (FWO-Vlaanderen) (grants G0A1515N and G029413N), by the Belgian Science Policy (Interuniversity Attraction Poles—IAP7/07) and by the Concerted Research Actions from Ghent University (BOF15/GOA/011). Further support was obtained by the Hercules Foundation, Flanders (grant AUGE/11/14), and the Desmoid Tumor Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Vleminckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naert, T., Vleminckx, K. (2018). Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics