Skip to main content

Biolistic Transformation of Wheat

  • Protocol
  • First Online:
Transgenic Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1864))

Abstract

Biolistic transformation of wheat is one of the most commonly used methods for gene function study and trait discovery. It has been widely adapted as a fundamental platform to generate wheat plants with new traits and has become a powerful tool for facilitating the crop improvement. In this chapter, we present a complete and straightforward protocol for wheat transformation via biolistic bombardment system. Although wheat is still one of the hardest plant species to transform, this protocol offers an optimized and efficient system to produce transgenic plants. To demonstrate the application of this protocol, in this chapter we describe an example of obtaining transgenic wheat by the co-bombardment of two plasmids, containing a green fluorescent protein gene and a glufosinate herbicide selection gene, respectively. In addition, procedures for the screening and testing of putative transgenic plants are described. This protocol has been successfully applied to generate stable transgenic bread wheat (Triticum aestivum) in both spring and winter varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shewry PR (2009) Wheat. J Exp Bot 60(6):1537–1553. https://doi.org/10.1093/jxb/erp058

    Article  CAS  PubMed  Google Scholar 

  2. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable Embryogenic callus. Nat Biotech 10(6):667–674

    Article  CAS  Google Scholar 

  3. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by agrobacterium tumefaciens. Plant Physiol 115(3):971–980. https://doi.org/10.1104/pp.115.3.971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15(3):305–327. https://doi.org/10.1007/s11032-004-8001-y

    Article  Google Scholar 

  5. Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63(5):1791–1798. https://doi.org/10.1093/jxb/err380

    Article  CAS  PubMed  Google Scholar 

  6. Ulker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotech 26(9):1015–1017 http://www.nature.com/nbt/journal/v26/n9/suppinfo/nbt.1491_S1.html

    Article  Google Scholar 

  7. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. https://doi.org/10.1038/ncomms12617 http://www.nature.com/articles/ncomms12617#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14(11):781–793. https://doi.org/10.1038/nrg3583 http://www.nature.com/nrg/journal/v14/n11/abs/nrg3583.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  9. Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11(7):323–328. https://doi.org/10.1007/bf00233358

    Article  CAS  PubMed  Google Scholar 

  10. Shi G, Zhang Z, Friesen TL, Raats D, Fahima T, Brueggeman RS, Lu S, Trick HN, Liu Z, Chao W, Frenkel Z, Xu SS, Rasmussen JB, Faris JD (2016) The hijacking of a receptor kinase–driven pathway by a wheat fungal pathogen leads to disease. Sci Adv 2(10):e1600822. https://doi.org/10.1126/sciadv.1600822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makandar R, Nalam VJ, Chowdhury Z, Sarowar S, Klossner G, Lee H, Burdan D, Trick HN, Gobbato E, Parker JE, Shah J (2015) The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. Mol Plant-Microbe Interact 28(8):943–953. https://doi.org/10.1094/MPMI-04-15-0079-R

    Article  CAS  PubMed  Google Scholar 

  12. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786. https://doi.org/10.1126/science.1239022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44(6):720–724 http://www.nature.com/ng/journal/v44/n6/abs/ng.2281.html#supplementary-information

    Article  CAS  Google Scholar 

  14. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18(4):675–689

    Article  CAS  Google Scholar 

  15. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5(3):213–218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tian, B., Navia-Urrutia, M., Chen, Y., Brungardt, J., Trick, H.N. (2019). Biolistic Transformation of Wheat. In: Kumar, S., Barone, P., Smith, M. (eds) Transgenic Plants. Methods in Molecular Biology, vol 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8778-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8777-1

  • Online ISBN: 978-1-4939-8778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics