Skip to main content

Long Range Sequencing and Validation of Insect Genome Assemblies

  • Protocol
  • First Online:
Insect Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1858))

Abstract

Advances in long read and long range sequencing technologies have enabled chromosome length resolution for de novo genome assemblies even in the absence of complementary resources such as physical maps. Herein, I introduce a few methods for quality control and discuss potential pitfalls when assembling insect genomes with long reads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. i5K Consortium (2013) The i5K initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered 104:595–600

    Article  Google Scholar 

  2. Richards S, Murali SC (2015) Best practices in insect genome sequencing: what works and what doesn’t. Curr Opin Insect Sci 7:1–7

    Article  Google Scholar 

  3. T.I.A.G. Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313

    Article  Google Scholar 

  4. Maumus F, Fiston-Lavier A-S, Quesneville H (2015) Impact of transposable elements on insect genomes and biology. Curr Opin Insect Sci 7:30–36

    Article  Google Scholar 

  5. Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  CAS  Google Scholar 

  6. Dudchenko O, Batra SS, Omer AD et al (2017) De novo assembly of the Aedes aegypti genome using Hi–C yields chromosome-length scaffolds. Science

    Google Scholar 

  7. Koren S, Walenz BP, Berlin K et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  Google Scholar 

  8. Li H (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32(14):2103–2110

    Article  CAS  Google Scholar 

  9. English AC, Richards S, Han Y et al (2012) Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS One 7:e47768

    Article  CAS  Google Scholar 

  10. Yeo S, Coombe L, Chu J et al (2018) ARCS: assembly roundup by chromium scaffolding. Bioinformatics 34(5):725–731

    Article  Google Scholar 

  11. Pryszcz LP, Gabaldón T (2016) Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res 44(12):e113

    Article  Google Scholar 

  12. Walker BJ, Abeel T, Shea T et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963

    Article  Google Scholar 

  13. Simao FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  CAS  Google Scholar 

  14. Wick RR, Schultz MB, Zobel J et al (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–3352

    Article  CAS  Google Scholar 

  15. Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028

    Article  CAS  Google Scholar 

  16. Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  Google Scholar 

  17. Li H (2018) Minimap2: fast pairwise alignment for long DNA sequences. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty191

    Article  Google Scholar 

  18. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of drosophila melanogaster. Science 287(5461):2185–2195

    Article  Google Scholar 

  19. Berlin K, Koren S, Chin C-S et al (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33(6):623–630

    Article  CAS  Google Scholar 

  20. Miller JR, Delcher AL, Koren S et al (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818–2824

    Article  CAS  Google Scholar 

  21. Chaisson MJ, Tesler G, Ramaraj T et al (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13:238

    Article  CAS  Google Scholar 

  22. Putnam NH, O’Connell BL, Stites JC et al (2016) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–350

    Article  CAS  Google Scholar 

  23. Zheng GXY, Lau BT, Schnall-Levin M et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34:303–311

    Article  CAS  Google Scholar 

  24. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinf 13:278–289

    Article  Google Scholar 

  25. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  26. Chin C-S, Peluso P, Sedlazeck FJ et al (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 13(12):1050–1054

    Article  CAS  Google Scholar 

  27. Saha S, Hosmani PS, Villalobos-Ayala K et al (2017) Improved annotation of the insect vector of citrus greening disease: biocuration by a diverse genomics community, Database. bax032

    Google Scholar 

  28. Benoit JB, Adelman ZN, Reinhardt K et al (2016) Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat Commun 7:10165

    Article  CAS  Google Scholar 

  29. Chen W, Hasegawa DK, Kaur N et al (2016) The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14:110

    Article  Google Scholar 

  30. Saha S, Hosmani P, Flores M, et al (2017) Using long reads, optical maps and long-range scaffolding to improve the Diaphorina citri genome

    Google Scholar 

  31. Huang S, Kang M, Xu A (2017) HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 490:49–54

    Google Scholar 

  32. Jiao W-B, Garcia Accinelli G, Hartwig B et al (2017) Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res 27(5):778–786

    Article  CAS  Google Scholar 

  33. Mostovoy Y, Levy-Sakin M, Lam J et al (2016) A hybrid approach for de novo human genome sequence assembly and phasing. Nat Methods 13(7):587–590

    Article  CAS  Google Scholar 

  34. Jain M, Koren S, Quick J et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345

    Article  CAS  Google Scholar 

  35. Erlich Y (2015) A vision for ubiquitous sequencing. Genome Res 25:1411–1416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Susan Brown and Michael Pfrender for the invitation to author this article. I would also like to thank my colleagues Prashant Hosmani and Mirella Flores for insightful discussions for troubleshooting assembly issues. This work was funded by USDA NIFA grant 2015-70016-23028 funded to Susan Brown and Lukas Mueller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saha, S. (2019). Long Range Sequencing and Validation of Insect Genome Assemblies. In: Brown, S., Pfrender, M. (eds) Insect Genomics. Methods in Molecular Biology, vol 1858. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8775-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8775-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8774-0

  • Online ISBN: 978-1-4939-8775-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics