Advertisement

Genome Size Estimation and Quantitative Cytogenetics in Insects

  • J. Spencer Johnston
  • Angelina Bernardini
  • Carl E. HjelmenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1858)

Abstract

With care, it is possible using flow cytometry to create a precise and accurate estimate of the genome size of an insect that is useful for genomics, genetics, molecular/cell biology, or systematics. Genome size estimation is a useful first step in a complete genome sequencing project. The number of sequencing reads required to produce a given level of coverage depends directly upon the 1C amount of DNA per cell, while an even more critical need is an accurate 1C genome size estimate to compare against the final assembly. Here we present a detailed protocol to estimate genome size using flow cytometry. Published genome size estimates should be submitted to genomesize.com so that they are available to all.

Key words

Flow cytometry Chromatin structure Endopolyploidy Underreplication Chromosomal sex determination Sexual dimorphism Ploidy Cryptic species 

References

  1. 1.
    Jacobson AL, Johnston JS, Rotenberg D, Whitfield AE, Booth W, Vargo EL, Kennedy GG (2013) Genome size and ploidy of thysanoptera. Insect Mol Biol 22(1):12–17.  https://doi.org/10.1111/j.1365-2583.2012.01165.xCrossRefPubMedGoogle Scholar
  2. 2.
    Lower SS, Spencer Johnston J, Stanger-Hall K, Hjelmen CE, Hanrahan SJ, Korunes K, Hall D (2017) Genome size in North American fireflies: substantial variation likely driven by neutral processes. Genome Biol Evol 9(6):1499–1512.  https://doi.org/10.1093/gbe/evx097CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rangel J, Strauss K, Seedorf K, Hjelmen C, Johnston J (2015) Endopolyploidy changes with age-related polyethism in the honey bee, Apis mellifera. PLoS One 10(4):e0122208.  https://doi.org/10.1371/journal.pone.0122208CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Scholes DR, Suarez AV, Paige KN (2013) Can endopolyploidy explain body size variation within and between castes in ants? Ecol Evol 3(7):2128–2137CrossRefGoogle Scholar
  5. 5.
    Johnston JS, Schoener M, McMahon DP (2013) DNA underreplication in the majority of nuclei in the Drosophila melanogaster thorax: evidence from Suur and flow cytometry. J Mol Biol Res 3(1):47CrossRefGoogle Scholar
  6. 6.
    Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177(3):1277–1290CrossRefGoogle Scholar
  7. 7.
    Barcenas N, Thompson N, Gomez-Tovar V, Morales-Ramos J, Johnston J (2008) Sex determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera: Pteromalidae). J Hymenopt Res 17:201–209Google Scholar
  8. 8.
    Johnston J, Ross L, Beani L, Hughes D, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol 13(6):581–585CrossRefGoogle Scholar
  9. 9.
    Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14(2):113–124CrossRefGoogle Scholar
  10. 10.
    Aron S, de Menten L, Van Bockstaele DR, Blank SM, Roisin Y (2005) When hymenopteran males reinvented diploidy. Curr Biol 15(9):824–827CrossRefGoogle Scholar
  11. 11.
    Huang W, Massouras A, Inoue Y, Peiffer J, Ramia M, Tarone AM, Turlapati L, Zichner T, Zhu D, Lyman RF, Magwire MM, Blankenburg K, Carbone MA, Chang K, Ellis LL, Fernandez S, Han Y, Highnam G, Hjelmen CE, Jack JR, Javaid M, Jayaseelan J, Kalra D, Lee S, Lewis L, Munidasa M, Ongeri F, Patel S, Perales L, Perez A, Pu L, Rollmann SM, Ruth R, Saada N, Warner C, Williams A, Wu YQ, Yamamoto A, Zhang Y, Zhu Y, Anholt RRH, Korbel JO, Mittelman D, Muzny DM, Gibbs RA, Barbadilla A, Johnston JS, Stone EA, Richards S, Deplancke B, Mackay TFC (2014) Natural variation in genome architecture among 205 Drosophila melanogaster genetic reference panel lines. Genome Res 24(7):1193–1208.  https://doi.org/10.1101/gr.171546.113CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Arnqvist G, Sayadi A, Immonen E, Hotzy C, Rankin D, Tuda M, Hjelmen CE, Johnston JS (2015) Genome size correlates with reproductive fitness in seed beetles. Proc R Soc B 282(1815):20151421CrossRefGoogle Scholar
  13. 13.
    Ellis LL, Huang W, Quinn AM, Ahuja A, Alfrejd B, Gomez FE, Hjelmen CE, Moore KL, Mackay TFC, Johnston JS, Tarone AM (2014) Intrapopulation genome size in D. melanogaster reflects life history variation and plasticity. PLoS Genet 10(7):e1004522.  https://doi.org/10.1371/journal.pgen.1004522CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Barre P, Noirot M, Louarn J, Duperray C, Hamon S (1996) Reliable flow cytometric estimation of nuclear DNA content in coffee trees. Cytometry 24(1):32–38CrossRefGoogle Scholar
  15. 15.
    Desalle R, Gregory TR, Johnston JS (2005) Preparation of samples for comparative studies of arthropod chromosomes: visualization, in situ hybridization, and genome size estimation. Methods Enzymol 395:460–488CrossRefGoogle Scholar
  16. 16.
    Gregory TR, Nathwani P, Bonnett TR, Huber DP (2013) Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation. Genome 56(9):505–510CrossRefGoogle Scholar
  17. 17.
    Hare EE, Johnston JS (2011) Genome size determination using flow cytometry of propidium iodide-stained nuclei. In: Orgogozo V, Rockman MV (eds) Molecular Methods for Evolutionary Genetics, vol 772. Humana Press, New York, NY, pp 3–12.  https://doi.org/10.1007/978-1-61779-228-1_1CrossRefGoogle Scholar
  18. 18.
    Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98(3):515–527CrossRefGoogle Scholar
  19. 19.
    Šmarda P, Bureš P, Šmerda J, Horová L (2012) Measurements of genomic GC content in plant genomes with flow cytometry: a test for reliability. New Phytol 193(2):513–521CrossRefGoogle Scholar
  20. 20.
    Hanrahan SJ, Johnston JS (2011) New genome size estimates of 134 species of arthropods. Chromosom Res 19:809–823.  https://doi.org/10.1007/s10577-011-9231-6CrossRefGoogle Scholar
  21. 21.
    Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25% larger than the Arabidopsis genome initiative estimate of ∼125 Mb. Ann Bot 91(5):547–557CrossRefGoogle Scholar
  22. 22.
    Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601):1049–1051CrossRefGoogle Scholar
  23. 23.
    Bennett MD, Price HJ, Johnston JS (2007) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101(6):777–790CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Spencer Johnston
    • 1
  • Angelina Bernardini
    • 2
  • Carl E. Hjelmen
    • 1
    Email author
  1. 1.Department of EntomologyTexas A&M UniversityCollege StationUSA
  2. 2.Interdisciplinary Program in GeneticsTexas A&M UniversityCollege StationUSA

Personalised recommendations