Preparation and Use of a Yeast shRNA Delivery System for Gene Silencing in Mosquito Larvae

  • Keshava Mysore
  • Limb K. Hapairai
  • Na Wei
  • Jacob S. Realey
  • Nicholas D. Scheel
  • David W. Severson
  • Molly Duman-ScheelEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1858)


The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the dengue and Zika virus vector Aedes aegypti and the primary African malaria vector Anopheles gambiae. RNA interference (RNAi) has facilitated gene silencing experiments in both of these disease vector mosquito species and could one day be applied as a new method of vector control. Here, we describe a procedure for the genetic engineering of Saccharomyces cerevisiae (baker’s yeast) that express short hairpin RNA (shRNA) corresponding to mosquito target genes of interest. Following cultivation, which facilitates inexpensive propagation of shRNA, the yeast is inactivated and prepared in a ready-to-use dry tablet formulation that is fed to mosquito larvae. Ingestion of the yeast tablets results in effective larval target gene silencing. This technically straightforward and affordable technique may be applicable to a wide variety of mosquito species and potentially to other arthropods that feed on yeast.

Key words

Aedes aegypti Anopheles gambiae Saccharomyces cerevisiae RNAi Dengue Zika Malaria Vector Development Insect 



We thank Ping Li, Longhua Sun, Chien-Wei Chen, Yingying Chen, Joanne Cunningham, and Diane Lovin for their technical assistance during development of these methodologies. Development of this protocol was funded by a United States Agency for International Development Award AID-OAA-F-16-00097 to MDS and by NIH/NIAID Award 1 R21 AI128116-01 to MDS, DWS, and NW.


  1. 1.
    CDC (2016) Surveillance and control of Aedes aegypti and Aedes albopictus. Accessed May 2016
  2. 2.
    CDC (2018) Dengue. Accessed March 2018
  3. 3.
    CDC (2018) Zika virus. Accessed February 2018
  4. 4.
    WHO (2016) World malaria report 2016. World Health Organization, GenevaGoogle Scholar
  5. 5.
    Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S, Kim Phuc H, Marinotti O, Jasinskiene N, James AA, Alphey L (2010) Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A 107(10):4550–4554. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, Black WC (2011) Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A 108(12):4772–4775. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, Oviedo MN, Lacroix R, Naish N, Morrison NI, Collado A, Stevenson J, Scaife S, Dafa'alla T, Fu G, Phillips C, Miles A, Raduan N, Kelly N, Beech C, Donnelly CA, Petrie WD, Alphey L (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30(9):828–830. CrossRefPubMedGoogle Scholar
  8. 8.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. CrossRefPubMedGoogle Scholar
  9. 9.
    Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G (2013) Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20(1):4–14. CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang H, Li HC, Miao XX (2013) Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci 20(1):15–30. CrossRefPubMedGoogle Scholar
  11. 11.
    Clemons A, Haugen M, Le C, Mori A, Tomchaney M, Severson DW, Duman-Scheel M (2011) siRNA-mediated gene targeting in Aedes aegypti embryos reveals that frazzled regulates vector mosquito CNS development. PLoS One 6(1):e16730. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Haugen M, Flannery E, Tomchaney M, Mori A, Behura SK, Severson DW, Duman-Scheel M (2011) Semaphorin-1a is required for Aedes aegypti embryonic nerve cord development. PLoS One 6(6):e21694. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nguyen C, Andrews E, Le C, Sun L, Annan Z, Clemons A, Severson DW, Duman-Scheel M (2013) Functional genetic characterization of salivary gland development in Aedes aegypti. EvoDevo 4(1):9. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sarro J, Andrews E, Sun L, Behura SK, Tan JC, Zeng E, Severson DW, Duman-Scheel M (2013) Requirement for commissureless2 function during dipteran insect nerve cord development. Dev Dyn 242(12):1466–1477. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang X, Mysore K, Flannery E, Michel K, Severson DW, Zhu KY, Duman-Scheel M (2015) Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J Vis Exp (97).
  16. 16.
    Mysore K, Sun L, Tomchaney M, Sullivan G, Adams H, Piscoya AS, Severson DW, Syed Z, Duman-Scheel M (2015) siRNA-mediated silencing of doublesex during demale development of the dengue vector mosquito Aedes aegypti. PLoS Negl Trop Dis 9(11):e0004213. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Duman-Scheel M, Syed Z (2015) Developmental neurogenetics of sexual dimorphism in Aedes aegypti. Front Ecol Evol 3.
  18. 18.
    Mysore K, Flannery E, Leming MT, Tomchaney M, Shi L, Sun L, O’Tousa JE, Severson DW, Duman-Scheel M (2014) Role of semaphorin-1a in the developing visual system of the disease vector mosquito Aedes aegypti. Dev Dyn 243(11):1457–1469. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39(11):824–832. CrossRefPubMedGoogle Scholar
  20. 20.
    Singh AD, Wong S, Ryan CP, Whyard S (2013) Oral delivery of double-stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. J Insect Sci 13(69). CrossRefGoogle Scholar
  21. 21.
    Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59(12):1212–1221. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19(5):683–693. CrossRefPubMedGoogle Scholar
  23. 23.
    Mysore K, Flannery EM, Tomchaney M, Severson DW, Duman-Scheel M (2013) Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a. PLoS Negl Trop Dis 7(5):e2215. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mysore K, Andrews E, Li P, Duman-Scheel M (2014) Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti. BMC Dev Biol 14:9. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Whyard S, Erdelyan CN, Partridge AL, Singh AD, Beebe NW, Capina R (2015) Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasit Vectors 8:96. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hapairai LK, Mysore K, Chen Y, Harper EI, Scheel MP, Lesnik AM, Sun L, Severson DW, Wei N, Duman-Scheel M (2017) Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti. Sci Rep 7(1):13223. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mysore K, Hapairai LK, Sun L, Harper EI, Chen Y, Eggleson KK, Realey JS, Scheel ND, Severson DW, Wei N, Duman-Scheel M (2017) Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality. Malar J 16(1):461. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122CrossRefGoogle Scholar
  29. 29.
    Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 (5429):901–906Google Scholar
  30. 30.
    An C, Budd A, Kanost MR, Michel K (2011) Characterization of a regulatory unit that controls melanization and affects longevity of mosquitoes. Cellular and molecular life sciences. CMLS 68(11):1929–1939. CrossRefPubMedGoogle Scholar
  31. 31.
    Clemons A, Mori A, Haugen M, Severson DW, Duman-Scheel M (2010) Culturing and egg collection of Aedes aegypti. Cold Spring Harb Protoc (10):pdb prot5507. doi: Google Scholar
  32. 32.
    Clonetech (2018) shRNA sequence designer tool. Accessed January 2018
  33. 33.
    Haugen M, Tomchaney M, Kast K, Flannery E, Clemons A, Jacowski C, Simanton Holland W, Le C, Severson D, Duman-Scheel M (2010) Whole-mount in situ hybridization for analysis of gene expression during Aedes aegypti development.. Cold Spring Harb Protoc 2010 (10): pdb.prot5509. doi: CrossRefGoogle Scholar
  34. 34.
    Patel NH (1996) In situ hybridization to whole mount Drosophila embryos. In: Krieg PA (ed) A laboratory guide to RNA: isolation, analysis, and synthesis. Wiley-Liss, New York, pp 357–370Google Scholar
  35. 35.
    Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC (2016) Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6:22587. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Keshava Mysore
    • 1
    • 2
  • Limb K. Hapairai
    • 1
    • 2
  • Na Wei
    • 2
    • 3
  • Jacob S. Realey
    • 1
    • 2
  • Nicholas D. Scheel
    • 2
    • 4
  • David W. Severson
    • 1
    • 2
    • 4
  • Molly Duman-Scheel
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of Medical and Molecular GeneticsIndiana University School of MedicineSouth BendUSA
  2. 2.Eck Institute for Global HealthUniversity of Notre DameNotre DameUSA
  3. 3.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA
  4. 4.Department of Biological SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations