Physical Genome Mapping Using Fluorescence In Situ Hybridization with Mosquito Chromosomes

  • Maria V. SharakhovaEmail author
  • Gleb N. Artemov
  • Vladimir A. Timoshevskiy
  • Igor V. Sharakhov
Part of the Methods in Molecular Biology book series (MIMB, volume 1858)


The development of genomic resources and tools is an important step in designing novel approaches to genetic control of mosquitoes. Physical genome maps enhance the quality of the genome assemblies, improve gene annotation, and provide a better framework for comparative and population genomics studies in mosquitoes. In this chapter, we describe protocols for an important procedure in physical genome mapping—fluorescence in situ hybridization (FISH). We provide details on (1) dissection of salivary glands, ovaries, and imaginal discs for obtaining high-quality polytene or mitotic chromosome preparations; (2) DNA-labeling procedures and extraction of repetitive DNA fractions; and (3) approaches to FISH on polytene and mitotic chromosomes.

Key words

Mosquitoes Fluorescence in situ hybridization Polytene and mitotic chromosomes Physical genome mapping 



Physical mapping of Anopheles was supported by Russian Science Foundation 15-14-20011 to Igor V. Sharakhov and physical mapping of Aedes and Culex was supported the National Institutes of Health grants 1R21AI121853 and 1R21AI123967 to Maria V. Sharakhova. We thank Phillip George for providing images of ovary dissection and Melissa Wade for proofreading the text.


  1. 1.
    Tolle MA (2009) Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care 39:97–140CrossRefGoogle Scholar
  2. 2.
    Sharakhov IV, Sharakhova MV (2008) Cytogenetic and physical mapping of mosquito genomes. In: Verrity JF, Abbington LE (eds) Chromosome mapping research developments. Nova Science Publishers, Inc, New York, pp 35–76Google Scholar
  3. 3.
    George P, Sharakhova MV, Sharakhov IV (2010) High-resolution cytogenetic map for the African malaria vector Anopheles gambiae. Insect Mol Biol 19:675–682CrossRefGoogle Scholar
  4. 4.
    Jiang X, Peery A, Hall AB, Sharma A, Chen XG, Waterhouse RM et al (2014) Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biol 15:459CrossRefGoogle Scholar
  5. 5.
    Sharakhova MV, Xia A, Tu Z, Shouche YS, Unger MF, Sharakhov IV (2010) A physical map for an Asian malaria mosquito, Anopheles stephensi. Am J Trop Med Hyg 83:1023–1027CrossRefGoogle Scholar
  6. 6.
    Wei Y, Cheng B, Zhu G, Shen D, Liang J, Wang C et al (2017) Comparative physical genome mapping of malaria vectors Anopheles sinensis and Anopheles gambiae. Malar J 16:235CrossRefGoogle Scholar
  7. 7.
    Artemov GN, Sharakhov MV, Naumenko AN, Karagodin DA, Baricheva EM, Stegniy VN et al (2015) A standard photomap of ovarian nurse cell chromosomes in the European malaria vector Anopheles atroparvus. Med Vet Entomol 29:230–237CrossRefGoogle Scholar
  8. 8.
    Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE et al (2015) Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347:1258522CrossRefGoogle Scholar
  9. 9.
    Artemov GN, Peery AN, Jiang X, Tu Z, Stegniy VN, Sharakhova MV, Sharakhov IV (2016) The physical genome mapping of Anopheles albimanus corrected scaffold misassemblies and identified inter-arm rearrangements in genus Anopheles. G3 (Bethesda)Google Scholar
  10. 10.
    Timoshevskiy VA, Severson DW, Debruyn BS, Black WC, Sharakhov IV, Sharakhova MV (2013) An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 7:e2052CrossRefGoogle Scholar
  11. 11.
    Sharakhova MV, Timoshevskiy VA, Yang F, Demin S, Severson DW, Sharakhov IV (2011) Imaginal discs: a new source of chromosomes for genome mapping of the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 5:e1335CrossRefGoogle Scholar
  12. 12.
    Naumenko AN, Timoshevskiy VA, Kinney NA, Kokhanenko AA, deBruyn BS, Lovin DD et al (2015) Mitotic-chromosome-based physical mapping of the culex quinquefasciatus genome. PLoS One 10:e0115737CrossRefGoogle Scholar
  13. 13.
    Timoshevskiy VA, Kinney NA, deBruyn BS, Mao C, Tu Z, Severso DW (2014) Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs. BMC Biol 12:27CrossRefGoogle Scholar
  14. 14.
    Xia A, Peery A, Kamali M, Liang J, Sharakhova MV, Sharakhov IV (2013) Fluorescence in situ hybridization to the polytene chromosomes of anopheles mosquitoes. Bio-protocol 3:e860CrossRefGoogle Scholar
  15. 15.
    Timoshevskiy VA, Sharma A, Sharakhov IV, Sharakhova MV (2012) Fluorescent in situ hybridization on mitotic chromosomes of mosquitoes. J Vis Exp (67):4215Google Scholar
  16. 16.
    Sharakhova MV, George P, Timoshevskiy V, Sharma A, Peery A, Sharakhov IV (2015) Mosquitoes (Diptera). In: Sharakhov IV (ed.), Protocols for cytogenetic mapping of Arthropod genomes. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, pp 93–170CrossRefGoogle Scholar
  17. 17.
    Clements AN (1992) The biology of mosquitoes: development, nutrition and reproduction. Chapman & Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria V. Sharakhova
    • 1
    Email author
  • Gleb N. Artemov
    • 1
  • Vladimir A. Timoshevskiy
    • 1
  • Igor V. Sharakhov
    • 1
  1. 1.Department of Entomology and Fralin Life Science InstituteVirginia TechBlacksburgUSA

Personalised recommendations