Skip to main content

Bioinformatic Analysis of Methylation Patterns Using Bisulfite Sequencing Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1858))

Abstract

Epigenetic factors, including DNA methylation, play a crucial role in the development, behavior, and stress response of insects yet the analysis of DNA methylation patterns remains quite challenging. This chapter will introduce the different technologies for DNA methylation analysis and present a general methodology for the analysis of DNA methylation patterns using the commonly used technology of bisulfite sequencing. The chapter will give a short overview of the sequencing technology itself and will primarily focus on presenting the bioinformatic and statistical analysis methodology of bisulfite sequencing data to study DNA methylation patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476. https://doi.org/10.1038/nrg2341

    Article  CAS  PubMed  Google Scholar 

  2. Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Dore LC, Weng X, Ji Q, Mets L, He C (2015) N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161(4):879–892. https://doi.org/10.1016/j.cell.2015.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, Hsu CH, Aravind L, He C, Shi Y (2015) DNA methylation on N6-Adenine in C. elegans. Cell 161(4):868–878. https://doi.org/10.1016/j.cell.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D (2015) N6-methyladenine functions as a potential epigenetic mark in eukaryotes. Bioessays 37(11):1155–1162. https://doi.org/10.1002/bies.201500076

    Article  CAS  PubMed  Google Scholar 

  5. Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J, Li C, Liu B, Luo Y, Zhu Y, Zhang N, He S, He C, Wang H, Chen D (2015) N6-methyladenine DNA modification in Drosophila. Cell 161(4):893–906. https://doi.org/10.1016/j.cell.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  6. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203. https://doi.org/10.1038/nrg2732

    Article  CAS  PubMed  Google Scholar 

  7. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1). https://doi.org/10.3390/biology5010003

    Article  PubMed Central  Google Scholar 

  8. Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clark SJ (2002) Identification and resolution of artifacts in bisulfite sequencing. Methods 27(2):101–107

    Article  CAS  PubMed  Google Scholar 

  9. Millar DS, Warnecke PM, Melki JR, Clark SJ (2002) Methylation sequencing from limiting DNA: embryonic, fixed, and microdissected cells. Methods 27(2):108–113

    Article  CAS  PubMed  Google Scholar 

  10. Holmes EE, Jung M, Meller S, Leisse A, Sailer V, Zech J, Mengdehl M, Garbe LA, Uhl B, Kristiansen G, Dietrich D (2014) Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS One 9(4):e93933. https://doi.org/10.1371/journal.pone.0093933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gatzmann F, Lyko F (2018) Whole-genome bisulfite sequencing for the methylation analysis of insect genomes. In: Brown S, Pfrender M (eds) Insect genomics, methods in molecular biology, vol XXX. Springer-Nature, New York

    Google Scholar 

  12. Warnecke PM, Stirzaker C, Melki JR, Millar DS, Paul CL, Clark SJ (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25(21):4422–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9(2):145–151. https://doi.org/10.1038/nmeth.1828

    Article  CAS  PubMed  Google Scholar 

  14. Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, Thurston M (2006) Open software for biologists: from famine to feast. Nat Biotechnol 24(7):801–803. https://doi.org/10.1038/nbt0706-801

    Article  CAS  PubMed  Google Scholar 

  15. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27(11):1571–1572. https://doi.org/10.1093/bioinformatics/btr167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. https://doi.org/10.1186/gb-2004-5-10-r80

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kunde-Ramamoorthy G, Coarfa C, Laritsky E, Kessler NJ, Harris RA, Xu M, Chen R, Shen L, Milosavljevic A, Waterland RA (2014) Comparison and quantitative verification of mapping algorithms for whole-genome bisulfite sequencing. Nucleic Acids Res 42(6):e43. https://doi.org/10.1093/nar/gkt1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonasio R, Li Q, Lian J, Mutti NS, Jin L, Zhao H, Zhang P, Wen P, Xiang H, Ding Y, Jin Z, Shen SS, Wang Z, Wang W, Wang J, Berger SL, Liebig J, Zhang G, Reinberg D (2012) Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol 22(19):1755–1764. https://doi.org/10.1016/j.cub.2012.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pegoraro M, Bafna A, Davies NJ, Shuker DM, Tauber E (2016) DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res 26(2):203–210. https://doi.org/10.1101/gr.196204.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rehan SM, Glastad KM, Lawson SP, Hunt BG (2016) The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata. Genome Biol Evol 8(5):1401–1410. https://doi.org/10.1093/gbe/evw079

    Article  PubMed  PubMed Central  Google Scholar 

  23. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13(10):R87. https://doi.org/10.1186/gb-2012-13-10-r87

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hansen KD, Langmead B, Irizarry RA (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13(10):R83. https://doi.org/10.1186/gb-2012-13-10-r83

    Article  PubMed  PubMed Central  Google Scholar 

  25. Feng H, Conneely KN, Wu H (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42(8):e69. https://doi.org/10.1093/nar/gku154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu H, Xu T, Feng H, Chen L, Li B, Yao B, Qin Z, Jin P, Conneely KN (2015) Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res 43(21):e141. https://doi.org/10.1093/nar/gkv715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32(10):1446–1453. https://doi.org/10.1093/bioinformatics/btw026

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Asselman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Asselman, J. (2019). Bioinformatic Analysis of Methylation Patterns Using Bisulfite Sequencing Data. In: Brown, S., Pfrender, M. (eds) Insect Genomics. Methods in Molecular Biology, vol 1858. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8775-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8775-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8774-0

  • Online ISBN: 978-1-4939-8775-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics