Whole-Genome Bisulfite Sequencing for the Methylation Analysis of Insect Genomes

  • Fanny Gatzmann
  • Frank LykoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1858)


DNA methylation is a conserved epigenetic modification of animal genomes, but genome methylation patterns appear surprisingly diverse in insects. Whole-genome bisulfite sequencing (WGBS) represents a sensitive and robust method for the characterization of genome-wide methylation patterns at single-base resolution. Here, we describe a step-by-step protocol for the generation and analysis of WGBS datasets using standard Illumina sequencing platforms. In comparison to whole-genome sequencing, WGBS has additional caveats that require particular attention and are highlighted in this chapter.

Key words

Epigenetics DNA methylation detection Whole-genome bisulfite sequencing WGBS 



We thank Günter Raddatz, Stephan Wolf, Nicolle Diessl, and the DKFZ Genomics and Proteomics Core Facility for helpful discussions.


  1. 1.
    Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514CrossRefGoogle Scholar
  2. 2.
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476CrossRefGoogle Scholar
  3. 3.
    Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492CrossRefGoogle Scholar
  4. 4.
    Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326. CrossRefPubMedGoogle Scholar
  5. 5.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl:245–254CrossRefGoogle Scholar
  6. 6.
    Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107(19):8689–8694CrossRefGoogle Scholar
  7. 7.
    Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328(5980):916–919CrossRefGoogle Scholar
  8. 8.
    Falckenhayn C, Boerjan B, Raddatz G, Frohme M, Schoofs L, Lyko F (2013) Characterization of genome methylation patterns in the desert locust Schistocerca gregaria. J Exp Biol 216. (Pt 8:1423–1429. CrossRefPubMedGoogle Scholar
  9. 9.
    Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8(11):e1000506CrossRefGoogle Scholar
  10. 10.
    Raddatz G, Guzzardo PM, Olova N, Fantappie MR, Rampp M, Schaefer M, Reik W, Hannon GJ, Lyko F (2013) Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci U S A 110(21):8627–8631CrossRefGoogle Scholar
  11. 11.
    Falckenhayn C, Carneiro VC, de Mendonca Amarante A, Schmid K, Hanna K, Kang S, Helm M, Dimopoulos G, Fantappie MR, Lyko F (2016) Comprehensive DNA methylation analysis of the Aedes aegypti genome. Sci Rep 6:36444. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ (2017) Evolution of DNA methylation across insects. Mol Biol Evol 34(3):654–665. CrossRefPubMedGoogle Scholar
  13. 13.
    Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22(15):2990–2997CrossRefGoogle Scholar
  14. 14.
    Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5(1):e8888. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19(6):959–966CrossRefGoogle Scholar
  16. 16.
    Lyko F, Maleszka R (2011) Insects as innovative models for functional studies of DNA methylation. Trends Genet 27(4):127–131CrossRefGoogle Scholar
  17. 17.
    Asselman J (2018) Bioinformatic analysis of methylation patterns using bisulfite sequencing data. In: Brown S, Pfrender ME (eds) Insect genomics, methods in molecular biology, vol XXX. Springer-Nature, New YorkGoogle Scholar
  18. 18.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232CrossRefGoogle Scholar
  20. 20.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics. 25(16):2078–2079. CrossRefGoogle Scholar
  21. 21.
    Feng H, Conneely KN, Wu H (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42(8):e69. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM (2013) An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One 8(12):e85024. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, Chan CKF, Nabhan AN, Su T, Morganti RM, Conley SD, Chaib H, Red-Horse K, Longaker MT, Snyder MP, Krasnow MA, Weissman IL (2017) Index switching causes “Spreading-Of-Signal” among multiplexed samples in illumina HiSeq 4000 DNA sequencing. BioRxiv.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Epigenetics, DKFZ-ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations