Generation of Ectopic Morphogen Gradients in the Zebrafish Blastula

  • Maraysa de Olivera-Melo
  • Peng-Fei Xu
  • Nathalie Houssin
  • Bernard Thisse
  • Christine ThisseEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1863)


In the zebrafish embryo, cells of the early blastula animal pole are all equivalent and are fully pluripotent until the midblastula transition that occurs at the tenth cell cycle (512 to 1K cells). This naive territory of the embryo is therefore perfectly suited to assay for morphogen activity. Here we describe different methods to generate ectopic morphogen gradients, either in vivo at the animal pole of the embryo, or in vitro in animal pole explants or in aggregates of animal pole blastomeres (also named embryoid bodies). These methods include injection of mRNA coding for growth factor(s) into animal pole blastomere(s), transplantation of growth factor(s) secreting cells, implantation of beads coated with purified protein(s), and various combinations of these different approaches. Our comparative study reveals that all these methods allow to generate morphogen gradient(s) that are able to induce, both in vivo and in vitro, the formation of a well-patterned embryonic axis.

Key words

Morphogen Gradient Zebrafish Blastula Injection Cell transplantation Bead implantation Embryoid bodies 



This work was supported by funds from University of Virginia (B.T., C.T.), March of Dimes (1-FY15-298 to B.T.), Jefferson Trust (FAAJ3199 to C.T.), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (grant number 200535/2014-5 to M. de O-M.).


  1. 1.
    Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456PubMedGoogle Scholar
  2. 2.
    Schneider S, Steinbeisser H, Warga RM et al (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198CrossRefPubMedGoogle Scholar
  3. 3.
    Lu FI, Thisse C, Thisse B (2011) Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc Natl Acad Sci U S A 108:15876–15880CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Green J (1999) The animal cap assay. Methods Mol Biol 127:1–13CrossRefPubMedGoogle Scholar
  5. 5.
    Kudoh T, Concha ML, Houart C et al (2004) Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development 131:3581–3592CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Thisse B, Wright CV, Thisse C (2000) Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403:425–428CrossRefPubMedGoogle Scholar
  7. 7.
    Chen Y, Schier AF (2001) The zebrafish Nodal signal Squint functions as a morphogen. Nature 411:607–610CrossRefPubMedGoogle Scholar
  8. 8.
    Agathon A, Thisse C, Thisse B (2003) The molecular nature of the zebrafish tail organizer. Nature 424:448–452CrossRefPubMedGoogle Scholar
  9. 9.
    Fauny JD, Thisse B, Thisse C (2009) The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity. Development 136:3811–3819CrossRefPubMedGoogle Scholar
  10. 10.
    Xu PF, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C (2014) Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344:87–89CrossRefPubMedGoogle Scholar
  11. 11.
    Dean DA (2006) Preparation (pulling) of needles for gene delivery by microinjection. CSH Protoc. Scholar
  12. 12.
    Thisse B, Thisse C (2015) Formation of the vertebrate embryo: moving beyond the Spemann organizer. Semin Cell Dev Biol 42:94–102CrossRefPubMedGoogle Scholar
  13. 13.
    Shen MM (2007) Nodal signaling: developmental roles and regulation. Development 134:1023–1034CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maraysa de Olivera-Melo
    • 1
  • Peng-Fei Xu
    • 1
  • Nathalie Houssin
    • 1
  • Bernard Thisse
    • 1
  • Christine Thisse
    • 1
    Email author
  1. 1.Department of Cell BiologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations