Skip to main content

FRAP Analysis of Extracellular Diffusion in Zebrafish Embryos

  • Protocol
  • First Online:
Morphogen Gradients

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1863))

Abstract

Morphogens are signaling molecules that provide positional information to cells during development. They must move through embryonic tissues in order to coordinate patterning. The rate of a morphogen’s movement through a tissue—its effective diffusivity—affects the morphogen’s distribution and therefore influences patterning. Fluorescence recovery after photobleaching (FRAP) is a powerful method to measure the effective diffusion of molecules through cells and tissues, and has been successfully employed to examine morphogen mobility and gain important insights into embryogenesis. Here, we provide detailed protocols for FRAP assays in vitro and in living zebrafish embryos, and we explain how to analyze FRAP data using the open-source software PyFRAP to determine effective diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25(1):1–47. https://doi.org/10.1016/S0022-5193(69)80016-0

    Article  CAS  PubMed  Google Scholar 

  2. Müller P et al (2013) Morphogen transport. Development 140(8):1621–1638. https://doi.org/10.1242/dev.083519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crick F (1970) Diffusion in embryogenesis. Nature 225(5231):420–422. https://doi.org/10.1038/225671b0

    Article  CAS  PubMed  Google Scholar 

  4. Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407. https://doi.org/10.1146/annurev-cellbio-092910-154148

    Article  CAS  PubMed  Google Scholar 

  5. Harmansa S et al (2015) Dpp spreading is required for medial but not for lateral wing disc growth. Nature 527(7578):317–322. https://doi.org/10.1038/nature15712

    Article  CAS  PubMed  Google Scholar 

  6. Müller P et al (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336(6082):721–724. https://doi.org/10.1126/science.1221920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rogers KW, Müller P (2018) Nodal and BMP dispersal during early zebrafish development. Developmental Biology pii:S0012-1606(17)30925-9. http://doi.org/10.1016/j.ydbio.2018.04.002

  8. Zinski J et al (2017) Systems biology derived source-sink mechanism of BMP gradient formation. eLife 6:e22199. https://doi.org/10.7554/eLife.22199

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pomreinke AP et al (2017) Dynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning. eLife 6:e25861. https://doi.org/10.7554/eLife.25861

    Article  PubMed  PubMed Central  Google Scholar 

  10. Poo MM, Cone RA (1973) Lateral diffusion of rhodopsin in Necturus rods. Exp Eye Res 17(6):503–510. https://doi.org/10.1016/0014-4835(73)90079-1

    Article  CAS  PubMed  Google Scholar 

  11. Liebman PA, Entine G (1974) Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 185(4149):457–459. http://doi.org/10.1126/science.185.4149.457

    Article  CAS  PubMed  Google Scholar 

  12. Lorén N et al (2015) Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q Rev Biophys 48(3):323–387. https://doi.org/10.1017/S0033583515000013

    Article  CAS  PubMed  Google Scholar 

  13. Kicheva A et al (2007) Kinetics of morphogen gradient formation. Science 315(5811):521–525. https://doi.org/10.1126/science.1135774

    Article  CAS  PubMed  Google Scholar 

  14. Gregor T et al (2007) Stability and nuclear dynamics of the Bicoid morphogen gradient. Cell 130(1):141–152. https://doi.org/10.1016/j.cell.2007.05.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Umulis DM, Othmer HG (2012) The importance of geometry in mathematical models of developing systems. Curr Opin Genet Dev 22(6):547–552. https://doi.org/10.1016/j.gde.2012.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bläßle A et al (2018) Quantitative diffusion measurements using the open-source software PyFRAP. Nature Communications 9(1):1582. http://doi.org/10.1038/s41467-018-03975-6

  17. Nüsslein-Volhard C, Dahm R (2002) Zebrafish: a practical approach. The practical approach series, vol 261, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  18. Westerfield M (2007) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Oregon

    Google Scholar 

  19. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  20. Rogers KW et al (2015) Measuring protein stability in living zebrafish embryos using Fluorescence Decay After Photoconversion (FDAP). J Vis Exp 95:e52266. https://doi.org/10.3791/52266

  21. Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. http://doi.org/10.1002/aja.1002030302

    Article  CAS  PubMed  Google Scholar 

  22. Bläßle A, Müller P (2015) PyFDAP: automated analysis of Fluorescence Decay After Photoconversion (FDAP) experiments. Bioinformatics 31(6):972–974. https://doi.org/10.1093/bioinformatics/btu735

    Article  PubMed  Google Scholar 

  23. Xu Q (1999) Microinjection into zebrafish embryos. In: Guille M (ed) Molecular methods in developmental biology: xenopus and zebrafish. Humana Press, Totowa, NJ, pp 125–132. https://doi.org/10.1385/1-59259-678-9:125

    Chapter  Google Scholar 

  24. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:e1115. https://doi.org/10.3791/1115

Download references

Acknowledgments

We thank Katherine W. Rogers, Alexander Bläßle, David Mörsdorf, and Hannes Preiß for useful discussions. This work was supported by the Max Planck Society and ERC Starting Grant 637840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soh, G.H., Müller, P. (2018). FRAP Analysis of Extracellular Diffusion in Zebrafish Embryos. In: Dubrulle, J. (eds) Morphogen Gradients. Methods in Molecular Biology, vol 1863. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8772-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8772-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8771-9

  • Online ISBN: 978-1-4939-8772-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics