Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish

  • Xue Wen Ng
  • Karuna Sampath
  • Thorsten WohlandEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1863)


There has been increasing interest in biophysical studies on live organisms to gain better insights into physiologically relevant biological events at the molecular level. Zebrafish (Danio rerio) is a viable vertebrate model to study such events due to its genetic and evolutionary similarities to humans, amenability to less invasive fluorescence techniques owing to its transparency and well-characterized genetic manipulation techniques. Fluorescence techniques used to probe biomolecular dynamics and interactions of molecules in live zebrafish embryos are therefore highly sought-after to bridge molecular and developmental events. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are two robust techniques that provide molecular level information on dynamics and interactions respectively. Here, we detail the steps for applying confocal FCS and FCCS, in particular single-wavelength FCCS (SW-FCCS), in live zebrafish embryos, beginning with sample preparation, instrumentation, calibration, and measurements on the FCS/FCCS instrument and ending with data analysis.

Key words

FCS FCCS Single molecule Biomolecular interactions Dissociation constant and affinity 



X.W.N. is supported by the NUS graduate research scholarship. T.W. acknowledges funding by the Ministry of Education of Singapore (grant number MOE2016-T3-1-005). Work in the laboratory of K.S. is supported by Warwick Medical School and the BBSRC. K.S. thanks Andreas Zaucker and Scott Clarke for the image of the experimental setup for mounting zebrafish embryos.


  1. 1.
    Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708CrossRefGoogle Scholar
  2. 2.
    Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27CrossRefGoogle Scholar
  3. 3.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61CrossRefPubMedGoogle Scholar
  4. 4.
    Pramanik A, Olsson M, Langel Ü et al (2001) Fluorescence correlation spectroscopy detects galanin receptor diversity on insulinoma cells. Biochemistry 40:10839–10845CrossRefPubMedGoogle Scholar
  5. 5.
    Pramanik A, Rigler R (2001) Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol Chem 382:371–378CrossRefPubMedGoogle Scholar
  6. 6.
    Meissner O, Häberlein H (2003) Lateral mobility and specific binding to GABAA receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42:1667–1672CrossRefPubMedGoogle Scholar
  7. 7.
    Pick H, Preuss AK, Mayer M et al (2003) Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cells. Biochemistry 42:877–884CrossRefPubMedGoogle Scholar
  8. 8.
    Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE (2013) Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol 84:630–642CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Saito K, Ito E, Takakuwa Y et al (2003) In situ observation of mobility and anchoring of PKCβI in plasma membrane. FEBS Lett 541:126–131CrossRefPubMedGoogle Scholar
  10. 10.
    White MD, Angiolini JF, Alvarez YD et al (2016) Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165:75–87CrossRefPubMedGoogle Scholar
  11. 11.
    Yu SR, Burkhardt M, Nowak M et al (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536CrossRefGoogle Scholar
  12. 12.
    Petrášek Z, Hoege C, Hyman AA, Schwille P (2008) Two-photon fluorescence imaging and correlation analysis applied to protein dynamics in C. elegans embryo. Proc SPIE 6860:68601LCrossRefGoogle Scholar
  13. 13.
    Petrášek Z, Hoege C, Mashaghi A et al (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95:5476–5486CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Abu-Arish A, Porcher A, Czerwonka A et al (2010) High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. Biophys J 99:L33–L35CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Teh C, Sun G, Shen H et al (2015) Modulating the expression level of secreted Wnt3 influences cerebellum development in zebrafish transgenics. Development 142:3721–3733CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Y, Wang X, Wohland T, Sampath K (2016) Extracellular interactions and ligand degradation shape the nodal morphogen gradient. eLife 5:e13879CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rasooly RS, Henken D, Freeman N et al (2003) Genetic and genomic tools for zebrafish research: the NIH zebrafish initiative. Dev Dyn 228:490–496CrossRefPubMedGoogle Scholar
  19. 19.
    Veldman MB, Lin S (2008) Zebrafish as a developmental model organism for pediatric research. Pediatr Res 64:470–476CrossRefPubMedGoogle Scholar
  20. 20.
    Weber T, Köster R (2013) Genetic tools for multicolor imaging in zebrafish larvae. Methods 62:279–291CrossRefPubMedGoogle Scholar
  21. 21.
    Shi X, Teo LS, Pan X et al (2009) Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 238:3156–3167CrossRefPubMedGoogle Scholar
  22. 22.
    Henion PD, Raible DW, Beattie CE et al (1996) Screen for mutations affecting development of Zebrafish neural crest. Dev Genet 18:11–17CrossRefPubMedGoogle Scholar
  23. 23.
    Lister J, Robertson C, Lepage T et al (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767PubMedGoogle Scholar
  24. 24.
    Antinucci P, Hindges R (2016) A crystal-clear zebrafish for in vivo imaging. Sci Rep 6:29490CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Karlsson J, von Hofsten J, Olsson P-E (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol 3:522–527CrossRefPubMedGoogle Scholar
  26. 26.
    Benninger RKP, Piston DW (2013) Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol. Chapter 4 Unit 4:11.1–24Google Scholar
  27. 27.
    Leroux C-E, Wang I, Derouard J, Delon A (2011) Adaptive optics for fluorescence correlation spectroscopy. Opt Express 19:26839–26849CrossRefPubMedGoogle Scholar
  28. 28.
    Leroux C-E, Monnier S, Wang I et al (2014) Fluorescent correlation spectroscopy measurements with adaptive optics in the intercellular space of spheroids. Biomed Opt Express 5:3730–3738CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pan X, Yu H, Shi X et al (2007) Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy. J Biomed Opt 12:14034CrossRefGoogle Scholar
  30. 30.
    Korzh S, Pan X, Garcia-Lecea M et al (2008) Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8:84CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ng XW, Teh C, Korzh V, Wohland T (2016) The secreted signaling protein Wnt3 is associated with membrane domains in vivo: a SPIM-FCS study. Biophys J 111:418–429CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wawrezinieck L, Rigneault H, Marguet D, Lenne P-F (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ng XW, Bag N, Wohland T (2015) Characterization of lipid and cell membrane organization by the fluorescence correlation spectroscopy diffusion law. Chimia 69:112–119CrossRefPubMedGoogle Scholar
  34. 34.
    Sezgin E, Azbazdar Y, Ng XW et al (2017) Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments. FEBS J 284:2513–2526CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schwille P, Meyer-Almes F-J, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2:2842–2856CrossRefPubMedGoogle Scholar
  37. 37.
    Hwang LC, Wohland T (2004) Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. ChemPhysChem 5:549–551CrossRefPubMedGoogle Scholar
  38. 38.
    Liu P, Sudhaharan T, Koh RML et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93:684–698CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Foo YH, Naredi-Rainer N, Lamb DC et al (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys J 102:1174–1183CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schwille P, Heinze KG (2001) Two-photon fluorescence cross-correlation spectroscopy. ChemPhysChem 2:269–272CrossRefPubMedGoogle Scholar
  41. 41.
    Kim SA, Heinze KG, Waxham MN, Schwille P (2004) Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci U S A 101:105–110CrossRefPubMedGoogle Scholar
  42. 42.
    Kim SA, Heinze KG, Bacia K et al (2005) Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys J 88:4319–4336CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Swift JL, Heuff R, Cramb DT (2006) A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. Biophys J 90:1396–1410CrossRefPubMedGoogle Scholar
  44. 44.
    Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49:1–13CrossRefPubMedGoogle Scholar
  45. 45.
    Müller BK, Zaychikov E, Bräuchle C, Lamb DC (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Macháň R, Kapusta P, Hof M (2014) Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy. Anal Bioanal Chem 406:4797–4813CrossRefPubMedGoogle Scholar
  47. 47.
    Yavas S, Macháň R, Wohland T (2016) The epidermal growth factor receptor forms location-dependent complexes in resting cells. Biophys J 111:2241–2254CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Krieger JW, Singh AP, Garbe CS et al (2014) Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). Opt Express 22:2358–2375CrossRefPubMedGoogle Scholar
  49. 49.
    Krieger JW, Singh AP, Bag N et al (2015) Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc 10:1948–1974CrossRefPubMedGoogle Scholar
  50. 50.
    Szalóki N, Krieger JW, Komáromi I et al (2015) Evidence for homodimerization of the c-Fos transcription factor in live cells revealed by FRET, SPIM-FCCS and MD-modeling. Mol Cell Biol 35:3785–3798CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pernuš A, Langowski J (2015) Imaging Fos-Jun transcription factor mobility and interaction in live cells by single plane illumination-fluorescence cross correlation spectroscopy. PLoS One 10:e0123070CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ma X, Foo YH, Wohland T (2014) Fluorescence cross-correlation spectroscopy (FCCS) in living cells. In: Engelborghs Y, Visser AJWG (eds) Fluorescence spectroscopy and microscopy. Methods and protocols, Methods in molecular biology. Humana Press, Totowa, NJ, pp 557–573CrossRefGoogle Scholar
  53. 53.
    Shi X, Yong HF, Sudhaharan T et al (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97:678–686CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sengupta P, Balaji J, Maiti S (2002) Measuring diffusion in cell membranes by fluorescence correlation spectroscopy. Methods 27:374–387CrossRefPubMedGoogle Scholar
  55. 55.
    Pan X, Foo W, Lim W et al (2007) Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Rev Sci Instrum 78:53711CrossRefGoogle Scholar
  56. 56.
    Shi X, Foo YH, Korzh V et al (2010) Applications of fluorescence correlation spectroscopy in living zebrafish embryos. In: Karuna S, Sudipto R (eds) Live imaging zebrafish – insights into development and disease. World Scientific Publishing, Singapore, pp 69–103CrossRefGoogle Scholar
  57. 57.
    Higashijima S, Okamoto H, Ueno N et al (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192:289–299CrossRefPubMedGoogle Scholar
  58. 58.
    Burket CT, Montgomery JE, Thummel R et al (2008) Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Res 17:265–279CrossRefPubMedGoogle Scholar
  59. 59.
    Peterson SM, Freeman JL (2009) RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. J Vis Exp (30):1–5Google Scholar
  60. 60.
    Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, EugeneGoogle Scholar
  61. 61.
    Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C 138:351–362Google Scholar
  62. 62.
    Stainier DY, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119:31–40PubMedGoogle Scholar
  63. 63.
    Malone MH, Sciaky N, Stalheim L et al (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 7:40CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rüttinger S, Buschmann V, Krämer B et al (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J Microsc 232:343–352CrossRefPubMedGoogle Scholar
  65. 65.
    Kapusta P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. PicoQuant Appl Note 0–1Google Scholar
  66. 66.
    Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6:164–170CrossRefPubMedGoogle Scholar
  68. 68.
    Nagy A, Wu J, Berland KM (2005) Characterizing observation volumes and the role of excitation saturation in one-photon fluorescence fluctuation spectroscopy. J Biomed Opt 10:44015CrossRefPubMedGoogle Scholar
  69. 69.
    Buschmann V, Krämer B, Koberling F, et al (2009) Quantitative FCS: determination of the confocal volume by FCS and bead scanning with the MicroTime 200. PicoQuant Appl Note 1–8Google Scholar
  70. 70.
    Sun G, Guo S-M, Teh C et al (2015) Bayesian model selection applied to the analysis of fluorescence correlation spectroscopy data of fluorescent proteins in vitro and in vivo. Anal Chem 87:4326–4333CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10:1938–1945CrossRefGoogle Scholar
  72. 72.
    Mütze J, Ohrt T, Schwille P (2011) Fluorescence correlation spectroscopy in vivo. Laser Photon Rev 5:52–67CrossRefGoogle Scholar
  73. 73.
    Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175CrossRefGoogle Scholar
  74. 74.
    Müller P, Schwille P, Weidemann T (2014) PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30:2532–2533CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sezgin E, Schwille P (2011) Fluorescence techniques to study lipid dynamics. Cold Spring Harb Perspect Biol 3:a009803CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973CrossRefPubMedGoogle Scholar
  77. 77.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441CrossRefGoogle Scholar
  78. 78.
    Kapusta P, Wahl M, Benda A, et al (2006) Fluorescence lifetime correlation spectroscopy. PicoQuant Appl Note 1–4Google Scholar
  79. 79.
    Wahl M (2014) Time-correlated single photon counting. PicoQuant Tech Note 1–14Google Scholar
  80. 80.
    Becker W (2017) The bh TCSPC handbook, 7th edn. Becker & Hickl GmbH, BerlinGoogle Scholar
  81. 81.
    Enderlein J, Gregor I (2005) Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum 76:33102CrossRefGoogle Scholar
  82. 82.
    Kapusta P, Macháň R, Benda A, Hof M (2012) Fluorescence lifetime correlation spectroscopy (FLCS): concepts, applications and outlook. Int J Mol Sci 13:12890–12910CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    He J, Guo S-M, Bathe M (2012) Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: Theory. Anal Chem 84:3871–3879CrossRefPubMedGoogle Scholar
  85. 85.
    Guo S-M, He J, Monnier N et al (2012) Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data. Anal Chem 84:3880–3888CrossRefPubMedGoogle Scholar
  86. 86.
    Kohl T, Haustein E, Schwille P (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89:2770–2782CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chen Y, Müller JD, So PTC, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Macdonald PJ, Johnson J, Chen Y, Mueller JD (2014) Brightness experiments. In: Engelborghs Y, Visser AJWG (eds) Fluorescence spectroscopy and microscopy. Methods and protocols, Methods in molecular biology. Humana Press, Totowa, NJ, pp 699–718CrossRefGoogle Scholar
  89. 89.
    Xu Q (1999) Microinjection into zebrafish embryos. In: Guille M (ed) Molecular methods in developmental biology. Xenopus and zebrafish, Methods in molecular biology. Humana Press, Totowa, NJ, pp 125–132CrossRefGoogle Scholar
  90. 90.
    Holder N, Xu Q (1999) Microinjection of DNA, RNA, and protein into the fertilized zebrafish egg for analysis of gene function. In: Sharpe Ivor Mason PT (ed) Molecular embryology. Methods and protocols, Methods in molecular biology, pp 487–490CrossRefGoogle Scholar
  91. 91.
    Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292CrossRefPubMedGoogle Scholar
  92. 92.
    Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:e1115Google Scholar
  93. 93.
    Benda A, Beneš M, Mareček V et al (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19:4120–4126CrossRefGoogle Scholar
  94. 94.
    Humpolícková J, Gielen E, Benda A et al (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23–L25CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Weiß K, Enderlein J (2012) Lipid diffusion within black lipid membranes measured with dual-focus fluorescence correlation spectroscopy. ChemPhysChem 13:990–1000CrossRefPubMedGoogle Scholar
  96. 96.
    Heinemann F, Betaneli V, Thomas FA, Schwille P (2012) Quantifying lipid diffusion by fluorescence correlation spectroscopy: a critical treatise. Langmuir 28:13395–13404CrossRefPubMedGoogle Scholar
  97. 97.
    Cranfill PJ, Sell BR, Baird MA et al (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13:557–562CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Macháň R, Foo YH, Wohland T (2016) On the equivalence of FCS and FRAP: simultaneous lipid membrane measurements. Biophys J 111:152–161CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Landgraf D, Okumus B, Chien P et al (2012) Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–482CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Gahlmann A, Moerner WE (2014) Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat Rev Microbiol 12:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Katayama H, Yamamoto A, Mizushima N et al (2008) GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct 33:1–12CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xue Wen Ng
    • 1
  • Karuna Sampath
    • 2
  • Thorsten Wohland
    • 1
    • 3
    Email author
  1. 1.Department of Chemistry and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
  2. 2.Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
  3. 3.Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations