Determining the Intracellular Organization of Organelles

  • Bruno Latgé
  • Kristine SchauerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1862)


Many studies have found alterations in the positioning and morphology of intracellular organelles under different experimental conditions. Although the precise quantification of these changes is challenging, it is strongly facilitated in single cells that are seeded on micropatterned substrates. Indeed, the controlled microenvironment of the cell leads to a reproducible distribution of organelles, simplifying image analysis and minimizing the number of cells required for robust phenotypes. Here, we outline how alterations in the intracellular organization of lysosomes and mitochondria, as a result of different growth conditions, can be efficiently quantified in cells seeded on adhesive micropatterns.

Key words

Micropatterning Lysosome positioning Mitochondria morphology Organelle positioning Cell architecture 



The authors greatly acknowledge the Cell and Tissue Imaging Facility (PICT-IBiSA @Burg and @Pasteur) and Nikon Imaging Center, Institut Curie (Paris), member of the French National Research Infrastructure France-BioImaging (ANR10-INBS-04). We thank Tarn Duong for advices on statistical analysis and kernel density estimation and Jean Philippe Grossier for providing scripts. This project was supported by grants from INFECT-ERA (ANR-14-IFEC-0002-04), the Centre National de la Recherche Scientifique and Institut Curie. The authors declare no conflict of interest.

Supplementary material

451006_1_En_19_MOESM1_ESM.txt (2 kb)
Annex 1 Macro1: Find Center of Micropatterns (TXT 1 kb)
451006_1_En_19_MOESM2_ESM.txt (2 kb)
Annex 2 Macro2: Batch Mode Segmentation Using 3D Object Counter (TXT 1 kb)
451006_1_En_19_MOESM3_ESM.txt (7 kb)
Annex 3 R Source File for KDE Computation (TXT 6 kb)


  1. 1.
    Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598CrossRefGoogle Scholar
  2. 2.
    Molina AJA, Shirihai OS (2009) Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein. Methods Enzymol 457:289–304CrossRefGoogle Scholar
  3. 3.
    Liberali P, Snijder B, Pelkmans L (2014) A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157(6):1473–1487CrossRefGoogle Scholar
  4. 4.
    Carter SB (1967) Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation. Exp Cell Res 48(1):189–193CrossRefGoogle Scholar
  5. 5.
    Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng; 2:227‑56.CrossRefGoogle Scholar
  6. 6.
    Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123(24):4201–4213CrossRefGoogle Scholar
  7. 7.
    Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  8. 8.
    Schauer K, Duong T, Bleakley K, Bardin S, Bornens M, Goud B (2010) Probabilistic density maps to study global endomembrane organization. Nat Methods 7(7):560–566CrossRefGoogle Scholar
  9. 9.
    Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y et al (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci 103(52):19771–19776CrossRefGoogle Scholar
  10. 10.
    Duong T, Goud B, Schauer K (2012) Closed-form density-based framework for automatic detection of cellular morphology changes. Proc Natl Acad Sci 109(22):8382–8387CrossRefGoogle Scholar
  11. 11.
    Vonaesch P, Cardini S, Sellin ME, Goud B, Hardt W-D, Schauer K (2013) Quantitative insights into actin rearrangements and bacterial target site selection from Salmonella Typhimurium infection of micropatterned cells. Cell Microbiol 15(11):1851–1865PubMedGoogle Scholar
  12. 12.
    Grossier J-P, Xouri G, Goud B, Schauer K (2014) Cell adhesion defines the topology of endocytosis and signaling. EMBO J 33(1):35–45CrossRefGoogle Scholar
  13. 13.
    Schauer K, Grossier J-P, Duong T, Chapuis V, Degot S, Lescure A et al (2014) A novel organelle map framework for high-content cell morphology analysis in high throughput. J Biomol Screen 19(2):317–324CrossRefGoogle Scholar
  14. 14.
    Rasband W ImageJ. U. S. National Institutes of Health, Bethesda, MD, pp 1997–2016
  15. 15.
    R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0, URL Google Scholar
  16. 16.
    van Dongen SFM, Maiuri P, Marie E, Tribet C, Piel M (2013) Triggering cell adhesion, migration or shape change with a dynamic surface coating. Adv Mater 25(12):1687–1691CrossRefGoogle Scholar
  17. 17.
    Kolodziej CM, Kim SH, Broyer RM, Saxer SS, Decker CG, Maynard HD (2012) Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns. J Am Chem Soc 134(1):247–255CrossRefGoogle Scholar
  18. 18.
    Duong T (2007) ks: Kernel density estimation and Kernel discriminant analysis for multivariate data in R. J Stat Softw 21:1–16CrossRefGoogle Scholar
  19. 19.
    Schauer K, Duong T, Gomes-Santos CS, Goud B (2014) Chapter 20 - Studying Intracellular trafficking pathways with probabilistic density maps. In: Perez F, Stephens DJ (eds) Methods in cell biology, vol 118. Academic Press, San Diego, CA, pp 325–343Google Scholar
  20. 20.
    Grossier J-P, Goud B, Schauer K (2014) Probabilistic density maps to study the spatial organization of endocytosis. Methods Mol Biol Clifton NJ 1174:117–138CrossRefGoogle Scholar
  21. 21.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji - an open source platform for biological image analysis. Nat Methods 9(7):676CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Mechanisms of Intracellular Transport Group, Institut CuriePSL Research UniversityParis Cedex 05France
  2. 2.Centre National de la Recherche ScientifiqueUnité Mixte de Recherche 144ParisFrance

Personalised recommendations