Lipectomizing Mice for Applications in Metabolism

  • Debrup Chakraborty
  • Jamie J. BernardEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1862)


The obesity epidemic is a critical public health problem closely associated with the development of metabolic disease. In obesity there is excess white adipose tissue, a dynamic tissue that has many biological functions. Specifically visceral adipose tissue (VAT) is an active endocrine organ producing hormones that control systemic metabolism. VAT accumulates immune cells that produce cytokines that drive chronic inflammation and promote insulin resistance. VAT can be surgically removed in experimental animals (lipectomy) to explore mechanisms by which VAT participates in metabolic, endocrine, and immunological functions. This chapter describes the technical protocol for efficient and successful removal of the gonadal fat pads in mice.

Key words

Lipectomy Visceral adipose tissue Mouse surgery Metabolism High-fat diet Obesity 


Conflict of Interest Statement

The authors declare no conflict of interest.

Support for Work

National Institutes of Health grant R00 CA177868, Michigan State University start-up funds


  1. 1.
    Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB (2007) Adipose tissue as an endocrine organ: from theory to practice. J Pediatr 83(5 Suppl):S192–S203. CrossRefGoogle Scholar
  2. 2.
    Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5(3):e1000324. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fujimoto N, Matsuo N, Sumiyoshi H, Yamaguchi K, Saikawa T, Yoshimatsu H, Yoshioka H (2005) Adiponectin is expressed in the brown adipose tissue and surrounding immature tissues in mouse embryos. Biochim Biophys Acta 1731(1):1–12. CrossRefPubMedGoogle Scholar
  4. 4.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280(5):E745–E751CrossRefGoogle Scholar
  5. 5.
    Chakraborty D, Benham V, Bullard B, Kearney T, Hsia HC, Gibbon D, Demireva EY, Lunt SY, Bernard JJ (2017) Fibroblast growth factor receptor is a mechanistic link between visceral adiposity and cancer. Oncogene. CrossRefGoogle Scholar
  6. 6.
    Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, Di Carli M, Libby P (2010) Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging 3(8):843–851. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Coppack SW, Jensen MD, Miles JM (1994) In vivo regulation of lipolysis in humans. J Lipid Res 35(2):177–193PubMedGoogle Scholar
  8. 8.
    Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8(1):21–34. CrossRefPubMedGoogle Scholar
  9. 9.
    Ledoux S, Queguiner I, Msika S, Calderari S, Rufat P, Gasc JM, Corvol P, Larger E (2008) Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes 57(12):3247–3257. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359. CrossRefPubMedGoogle Scholar
  12. 12.
    Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17(5):644–656. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK (2011) Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011:490650. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, Meigs JB, Sutherland P, D'Agostino RB Sr, O'Donnell CJ, Fox CS (2010) Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring) 18(11):2191–2198. CrossRefGoogle Scholar
  15. 15.
    Kang YE, Kim JM, Joung KH, Lee JH, You BR, Choi MJ, Ryu MJ, Ko YB, Lee MA, Lee J, Ku BJ, Shong M, Lee KH, Kim HJ (2016) The roles of Adipokines, Proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One 11(4):e0154003. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cranford TL, Enos RT, Velazquez KT, McClellan JL, Davis JM, Singh UP, Nagarkatti M, Nagarkatti PS, Robinson CM, Murphy EA (2016) Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int J Obes 40(5):844–851. CrossRefGoogle Scholar
  19. 19.
    Boutens L, Stienstra R (2016) Adipose tissue macrophages: going off track during obesity. Diabetologia 59(5):879–894. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lu YP, Lou YR, Bernard JJ, Peng QY, Li T, Lin Y, Shih WJ, Nghiem P, Shapses S, Wagner GC, Conney AH (2012) Surgical removal of the parametrial fat pads stimulates apoptosis and inhibits UVB-induced carcinogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 109(23):9065–9070. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Šestan M, Wensveen FM, Polić B (2015) Excision of visceral adipose tissue from live mice (VATectomy). Bio-protocol 5(23):e1668. CrossRefGoogle Scholar
  22. 22.
    Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pritchett-Corning KR, Luo Y, Mulder GB, White WJ (2011) Principles of rodent surgery for the new surgeon. J Vis Exp 47:pii: 2586. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingUSA

Personalised recommendations