Skip to main content

Imaging Glioma Progression by Intravital Microscopy

  • Protocol
  • First Online:
Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

We describe here a method for generating mouse orthotopic gliomas in order to follow their progression over time by multi-photon laser scanning microscopy. After craniotomy of the parietal bone, glioma cells are implanted in the brain cortex and a glass window is cemented atop, allowing chronical imaging of the tumor. The expression of different fluorescent proteins in tumor cells and in specific cell types of a number of currently available transgenic mouse strains allows obtaining multicolor 3D images of the tumor over time. This technique is suitable both to evaluate the effect of pharmacological treatments and to unravel basic mechanisms of tumor-host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. https://doi.org/10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

  2. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. https://doi.org/10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  3. Abe T, Fujimori T (2013) Reporter mouse lines for fluorescence imaging. Dev Growth Differ 55:390–405. https://doi.org/10.1111/dgd.12062

    Article  CAS  PubMed  Google Scholar 

  4. Erapaneedi R, Belousov VV, Schäfers M, Kiefer F (2016) A novel family of fluorescent hypoxia sensors reveal strong heterogeneity in tumor hypoxia at the cellular level. EMBO J 35:102–113. https://doi.org/10.15252/embj.201592775

    Article  CAS  PubMed  Google Scholar 

  5. Mathivet T, Bouleti C, Van Woensel M et al (2017) Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth. EMBO Mol Med 9:1629. https://doi.org/10.15252/emmm.201607445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ricard C, Stanchi F, Rodriguez T et al (2013) Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density. PLoS One 8:e72655. https://doi.org/10.1371/journal.pone.0072655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ricard C, Stanchi F, Rougon G, Debarbieux F (2014) An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy. J Vis Exp. https://doi.org/10.3791/51108

  8. Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30:2394–2400

    CAS  PubMed  Google Scholar 

  9. Seyfried TN, el-Abbadi M, Roy ML (1992) Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 17:147–167

    Article  CAS  Google Scholar 

  10. Mostany R, Portera-Cailliau C (2008) A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp. https://doi.org/10.3791/678

  11. Subach OM, Gundorov IS, Yoshimura M et al (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15:1116–1124. https://doi.org/10.1016/j.chembiol.2008.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Filonov GS, Piatkevich KD, Ting L-M et al (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761. https://doi.org/10.1038/nbt.1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muzumdar MD, Tasic B, Miyamichi K, et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. https://doi.org/10.1002/dvg.20335

    Article  CAS  Google Scholar 

  14. Claxton S, Kostourou V, Jadeja S et al (2008) Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46(2):74–80. https://doi.org/10.1002/dvg.20367

    Article  CAS  PubMed  Google Scholar 

  15. Bitterman H (2009) Bench-to-bedside review: oxygen as a drug. Crit Care 13:205. https://doi.org/10.1186/cc7151

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tremoleda JL, Kerton A, Gsell W (2012) Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res 2:44. https://doi.org/10.1186/2191-219X-2-44

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci U S A 99:11014–11019. https://doi.org/10.1073/pnas.172368799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The development of the technique here described was supported by the Belgian Cancer Foundation (Stichting Tegen Kanker, grant 2012‐181) and a Hercules type 2 grant (Herculesstichting: AKUL11033). We thank Dr. Till Acker (Institute of Neuropathology, University of Giessen, Germany) and Dr. Thomas N. Seyfried (Biology department, Boston College, USA) for the gift of Glioma261 and CT2A cells, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Stanchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stanchi, F., Matsumoto, K., Gerhardt, H. (2019). Imaging Glioma Progression by Intravital Microscopy. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics