Skip to main content

A Protocol to Compare Methods for Untargeted Metabolomics

  • Protocol
  • First Online:
Book cover Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

There are thousands of published methods for profiling metabolites with liquid chromatography/mass spectrometry (LC/MS). While many have been evaluated and optimized for a small number of select metabolites, very few have been assessed on the basis of global metabolite coverage. Thus, when performing untargeted metabolomics, researchers often question which combination of extraction techniques, chromatographic separations, and mass spectrometers is best for global profiling. Method comparisons are complicated because thousands of LC/MS signals (so-called features) in a typical untargeted metabolomic experiment cannot be readily identified with current resources. It is therefore challenging to distinguish methods that increase signal number due to improved metabolite coverage from methods that increase signal number due to contamination and artifacts. Here, we present the credentialing protocol to remove the latter from untargeted metabolomic datasets without having to identify metabolite structures. This protocol can be used to compare or optimize methods pertaining to any step of the untargeted metabolomic workflow (e.g., extraction, chromatography, mass spectrometer, informatic software, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 30:Unit 30 32 31–Unit 30 32 24. https://doi.org/10.1002/0471142727.mb3002s98

    Article  Google Scholar 

  2. Nikolskiy I, Mahieu NG, Chen YJ et al (2013) An untargeted metabolomic workflow to improve structural characterization of metabolites. Anal Chem 85(16):7713–7719. https://doi.org/10.1021/ac400751j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Milne SB, Mathews TP, Myers DS et al (2013) Sum of the parts: mass spectrometry-based metabolomics. Biochemistry 52(22):3829–3840. https://doi.org/10.1021/bi400060e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benton HP, Ivanisevic J, Mahieu NG et al (2015) Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem 87(2):884–891. https://doi.org/10.1021/ac5025649

    Article  CAS  PubMed  Google Scholar 

  5. Mahieu NG, Huang X, Chen YJ, Patti GJ (2014) Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods. Anal Chem 86(19):9583–9589. https://doi.org/10.1021/ac503092d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahieu NG, Patti GJ (2017) Systems-level annotation of a metabolomics data set reduces 25000 features to fewer than 1000 unique metabolites. Anal Chem 89(19):10397–10406. https://doi.org/10.1021/acs.analchem.7b02380

    Article  CAS  PubMed  Google Scholar 

  7. Lindahl A, Saaf S, Lehtio J, Nordstrom A (2017) Tuning Metabolome coverage in reversed phase LC-MS metabolomics of MeOH extracted samples using the reconstitution solvent composition. Anal Chem 89(14):7356–7364. https://doi.org/10.1021/acs.analchem.7b00475

    Article  CAS  PubMed  Google Scholar 

  8. Vinayavekhin N, Saghatelian A (2010) Untargeted metabolomics. Curr Protoc Mol Biol Chapter 30:Unit 30 1.1–Unit 30 124. https://doi.org/10.1002/0471142727.mb3001s90

    Article  Google Scholar 

  9. De Vos RC, Moco S, Lommen A et al (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2(4):778–791. https://doi.org/10.1038/nprot.2007.95

    Article  CAS  PubMed  Google Scholar 

  10. Weber RJM, Lawson TN, Salek RM et al (2017) Computational tools and workflows in metabolomics: an international survey highlights the opportunity for harmonisation through galaxy. Metabolomics 13(2):12. https://doi.org/10.1007/s11306-016-1147-x

    Article  CAS  PubMed  Google Scholar 

  11. Patti GJ (2011) Separation strategies for untargeted metabolomics. J Sep Sci 34(24):3460–3469. https://doi.org/10.1002/jssc.201100532

    Article  CAS  PubMed  Google Scholar 

  12. Naser FJ, Mahieu NG, Wang L et al (2018) Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Anal Bioanal Chem 410(4):1287–1297. https://doi.org/10.1007/s00216-017-0768-x

    Article  CAS  PubMed  Google Scholar 

  13. Ivanisevic J, Zhu ZJ, Plate L et al (2013) Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem 85(14):6876–6884. https://doi.org/10.1021/ac401140h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93. https://doi.org/10.1016/j.cbpa.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  15. Libiseller G, Dvorzak M, Kleb U et al (2015) IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16:118. https://doi.org/10.1186/s12859-015-0562-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patti GJ, Tautenhahn R, Siuzdak G (2012) Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat Protoc 7(3):508–516. https://doi.org/10.1038/nprot.2011.454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R35ES028365 and R21CA191097 as well as support from the Pew Scholars Program in the Biomedical Sciences, the Edward Mallinckrodt, Jr., Foundation, and Agilent Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Patti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, L., Naser, F.J., Spalding, J.L., Patti, G.J. (2019). A Protocol to Compare Methods for Untargeted Metabolomics. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics