Skip to main content

Combined Immunofluorescence, RNA FISH, and DNA FISH in Preimplantation Mouse Embryos

  • Protocol
  • First Online:
X-Chromosome Inactivation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1861))

Abstract

Transcriptional and epigenetic dynamics of the genome occur during early development in mammals. It has been difficult to study these dynamics due to the limitation of materials and the difficulty of handling. In this chapter, we describe our attempt to apply a combination of immunofluorescence (IF), and RNA and DNA fluorescent in situ hybridization (FISH) in preimplantation mouse embryos. We have concentrated on refining these techniques to study the dynamics of X chromosome inactivation in mouse embryos. The techniques and general underlying principles described here should be applicable to other mammals of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 206:1848–1867. https://doi.org/10.1101/gad.1422906.1848

    Article  Google Scholar 

  2. Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20(16):2223–2237. https://doi.org/10.1101/gad.380906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaumeil J, Okamoto I, Guggiari M, Heard E (2002) Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet Genome Res 99(1-4):75–84. https://doi.org/10.1159/000071577

    Article  CAS  PubMed  Google Scholar 

  4. Chaumeil J, Okamoto I, Heard E (2004) X-chromosome inactivation in mouse embryonic stem cells: analysis of histone modifications and transcriptional activity using immunofluorescence and FISH. Methods Enzymol 376:405–419. https://doi.org/10.1016/S0076-6879(03)76027-3

    Article  CAS  PubMed  Google Scholar 

  5. Chaumeil J, Augui S, Chow JC, Heard E (2008) Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol Biol 463:297–308

    Article  CAS  Google Scholar 

  6. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303(5658):644–649. https://doi.org/10.1126/science.1092727

    Article  CAS  PubMed  Google Scholar 

  7. Okamoto I, Arnaud D, Le Baccon P et al (2005) Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438(7066):369–373. https://doi.org/10.1038/nature04155

    Article  CAS  PubMed  Google Scholar 

  8. Patrat C, Okamoto I, Diabangouaya P et al (2009) Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc Natl Acad Sci U S A 106(13):5198–5203

    Article  CAS  Google Scholar 

  9. Nora EP, Lajoie BR, Schulz EG et al (2013) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385. https://doi.org/10.1038/nature11049

    Article  CAS  Google Scholar 

  10. Okamoto I, Patrat C, Thépot D et al (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472(7343):370–374. https://doi.org/10.1038/nature10184

    Article  CAS  PubMed  Google Scholar 

  11. Hogan BL, Beddington R, Costantini F, Facy E (1994) Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  12. Lawrence JB, Singer RH (1985) Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res 13(5):1777–1799

    Article  CAS  Google Scholar 

  13. Ranisavljevic N, Okamoto I, Heard E, Ancelin K (2017) RNA FISH to study zygotic genome activation in early mouse embryos. Methods Mol Biol 1605:103–124

    Google Scholar 

Download references

Acknowledgments

We thank E. Heard for critical reading of the manuscript.

This work was supported by funds from MEXT and JST-ERATO and by JSPS KAKENHI Grant Number JP25291076 to I.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuhiro Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okamoto, I. (2018). Combined Immunofluorescence, RNA FISH, and DNA FISH in Preimplantation Mouse Embryos. In: Sado, T. (eds) X-Chromosome Inactivation. Methods in Molecular Biology, vol 1861. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8766-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8766-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8765-8

  • Online ISBN: 978-1-4939-8766-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics