SNAREs pp 95-114 | Cite as

Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly

  • Lu Ma
  • Junyi Jiao
  • Yongli ZhangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)


Intracellular membrane fusion mediates material and information exchange among different cells or cellular compartments with high accuracy and spatiotemporal resolution. Fusion is driven by ordered folding and assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors (SNAREs) and regulated by many other proteins. Understanding regulated SNARE assembly is key to dissecting mechanisms and physiologies of various fusion processes and their associated diseases. Yet, it remains challenging to study regulated SNARE assembly using traditional ensemble-based experimental approaches. Here, we describe our new method to measure the energy and kinetics of neuronal SNARE assembly in the presence of α-SNAP, using a single-molecule manipulation approach based on high-resolution optical tweezers. Detailed experimental protocols and methods of data analysis are shown. This approach can be widely applied to elucidate the effects of regulatory proteins on SNARE assembly and membrane fusion.

Key words

Optical tweezers Single-molecule manipulation SNARE assembly and disassembly SNAP NSF Hidden Markov modeling Energy landscape 



This work was supported by NIH grants RO1GM093341 and RO1GM120193 to Y.Z. We also thank the support from the National Natural Science Foundation of China (31770812 to M.L.) and the Chinese Academy of Science Chengkun Wang talent program and Jiaxi Lu international team.


  1. 1.
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477CrossRefGoogle Scholar
  2. 2.
    Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17:465–479CrossRefGoogle Scholar
  3. 3.
    Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324CrossRefGoogle Scholar
  4. 4.
    Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 95:15781–15786CrossRefGoogle Scholar
  5. 5.
    Fasshauer D, Eliason WK, Brunger AT, Jahn R (1998) Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37:10354–10362CrossRefGoogle Scholar
  6. 6.
    Strop P, Kaiser SE, Vrljic M, Brunger AT (2008) The structure of the yeast plasma membrane SNARE complex reveals destabilizing water-filled cavities. J Biol Chem 283:1113–1119CrossRefGoogle Scholar
  7. 7.
    Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395:347–353CrossRefGoogle Scholar
  8. 8.
    Zwilling D, Cypionka A, Pohl WH, Fasshauer D, Walla PJ, Wahl MC, Jahn R (2007) Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies. EMBO J 26:9–18CrossRefGoogle Scholar
  9. 9.
    Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528CrossRefGoogle Scholar
  10. 10.
    Fernandez I, Ubach J, Dulubova I, Zhang XY, Sudhof TC, Rizo J (1998) Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94:841–849CrossRefGoogle Scholar
  11. 11.
    Lerman JC, Robblee J, Fairman R, Hughson FM (2000) Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39:8470–8479CrossRefGoogle Scholar
  12. 12.
    Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523–535CrossRefGoogle Scholar
  13. 13.
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772CrossRefGoogle Scholar
  14. 14.
    Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang YL (2015) Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. elife 4:e09580CrossRefGoogle Scholar
  15. 15.
    Zorman S, Rebane AA, Ma L, Yang GC, Molski MA, Coleman J, Pincet F, Rothman JE, Zhang YL (2014) Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. elife 3:e03348CrossRefGoogle Scholar
  16. 16.
    Gao Y, Zorman S, Gundersen G, Xi ZQ, Ma L, Sirinakis G, Rothman JE, Zhang YL (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–1343CrossRefGoogle Scholar
  17. 17.
    Brunger AT, Weninger K, Bowen M, Chu S (2009) Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 78:903–928CrossRefGoogle Scholar
  18. 18.
    Weninger K, Bowen ME, Chu S, Brunger AT (2003) Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. Proc Natl Acad Sci U S A 100:14800–14805CrossRefGoogle Scholar
  19. 19.
    Lai Y et al (2017) Molecular mechanisms of synaptic vesicle priming by Munc13 and Munc18. Neuron 95:591–607CrossRefGoogle Scholar
  20. 20.
    Rizo J, Xu JJ (2015) The synaptic vesicle release machinery. Annu Rev Biophys 44(44):339–367CrossRefGoogle Scholar
  21. 21.
    Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215CrossRefGoogle Scholar
  22. 22.
    Verhage M et al (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869CrossRefGoogle Scholar
  23. 23.
    Rizo J, Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices-guilty as charged? Annu Rev Cell Dev Biol 28:279–308CrossRefGoogle Scholar
  24. 24.
    Peng RW, Gallwitz D (2002) Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157:645–655CrossRefGoogle Scholar
  25. 25.
    Yu HJ, Rathore SS, Lopez JA, Davis EM, James DE, Martin JL, Shen JS (2013) Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 110:E3271–E3280CrossRefGoogle Scholar
  26. 26.
    Shen JS, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–195CrossRefGoogle Scholar
  27. 27.
    Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM (2015) A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349:1111–1114CrossRefGoogle Scholar
  28. 28.
    Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ, Cheng Y, Brunger AT (2015) Mechanistic insights into the recycling machine of the SNARE complex. Nature 518:61–67CrossRefGoogle Scholar
  29. 29.
    Park Y, Vennekate W, Yavuz H, Preobraschenski J, Hernandez JM, Riedel D, Walla PJ, Jahn R (2014) Alpha-SNAP interferes with the zippering of the snare protein membrane fusion machinery. J Biol Chem 289:16326–16335CrossRefGoogle Scholar
  30. 30.
    Song HK, Orr A, Duan MT, Merz AJ, Wickner W (2017) Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. elife 6:e26646CrossRefGoogle Scholar
  31. 31.
    Zick M, Orr A, Schwartz ML, Merz AJ, Wickner WT (2015) Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18. Proc Natl Acad Sci U S A 112:E2290–E2297CrossRefGoogle Scholar
  32. 32.
    Schwartz ML, Nickerson DP, Lobingier BT, Plemel RL, Duan MT, Angers CG, Zick M, Merz AJ (2017) Sec17 (alpha-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. elife 6:e27396CrossRefGoogle Scholar
  33. 33.
    Zhang YL (2017) Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci 26:1252–1265CrossRefGoogle Scholar
  34. 34.
    Rebane AA, Wang B, Ma L, Qu H, Coleman J, Krishnakumar SS, Rothman JE, Zhang YL (2018) Two disease-causing SNAP-25B mutations selectively impair SNARE C-terminal assembly. J Mol Biol 430:479–490CrossRefGoogle Scholar
  35. 35.
    Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:676–680CrossRefGoogle Scholar
  36. 36.
    Malsam J, Parisotto D, Bharat TAM, Scheutzow A, Krause JM, Briggs JAG, Sollner TH (2012) Complexin arrests a pool of docked vesicles for fast Ca2+-dependent release. EMBO J 31:3270–3281CrossRefGoogle Scholar
  37. 37.
    Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK (2008) Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat Struct Mol Biol 15:707–713CrossRefGoogle Scholar
  38. 38.
    Kyoung M, Srivastava A, Zhang YX, Diao JJ, Vrljic M, Grob P, Nogales E, Chu S, Brunger AT (2011) In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc Natl Acad Sci U S A 108:E304–E313CrossRefGoogle Scholar
  39. 39.
    Maximov A, Tang J, Yang XF, Pang ZPP, Sudhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–521CrossRefGoogle Scholar
  40. 40.
    Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187CrossRefGoogle Scholar
  41. 41.
    Zhang YL, Jiao J, Rebane AA (2016) Hidden Markov modeling with detailed balance and its application to single protein folding. Biophys J 111:2110–2124CrossRefGoogle Scholar
  42. 42.
    Ma L, Kang Y, Jiao J, Rebane AA, Cha HK, Xi Z, Qu H, Zhang Y (2016) Alpha-SNAP enhances SNARE zippering by stabilizing the SNARE four-helix bundle. Cell Rep 15:531–539CrossRefGoogle Scholar
  43. 43.
    Rebane AA, Ma L, Zhang YL (2016) Structure-based derivation of protein folding intermediates and energies from optical tweezers. Biophys J 110:441–454CrossRefGoogle Scholar
  44. 44.
    Zhang YL, Sirinakis G, Gundersen G, Xi ZQ, Gao Y (2012) DNA translocation of ATP-dependent chromatin remodelling factors revealed by high-resolution optical tweezers. Methods Enzymol 513:3–28CrossRefGoogle Scholar
  45. 45.
    Zhang YL, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, Cairns BR, Peterson CL, Bustamante C (2006) DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell 24:559–568CrossRefGoogle Scholar
  46. 46.
    Sirinakis G, Ren YX, Gao Y, Xi ZQ, Zhang YL (2012) Combined and versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev Sci Instrum 83:093708CrossRefGoogle Scholar
  47. 47.
    Sirinakis G, Clapier CR, Gao Y, Viswanathanc R, Cairns BR, Zhang YL (2011) The RSC chromatin remodeling ATPase translocates DNA with high force and small step size. EMBO J 30:2364–2372CrossRefGoogle Scholar
  48. 48.
    Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103:9006–9011CrossRefGoogle Scholar
  49. 49.
    Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9CrossRefGoogle Scholar
  50. 50.
    Zhang XM, Ma L, Zhang YL (2013) High-resolution optical tweezers for single-molecule manipulation. Yale J Biol Med 86:367–383PubMedPubMedCentralGoogle Scholar
  51. 51.
    Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060CrossRefGoogle Scholar
  52. 52.
    Jiao JY, Rebane AA, Ma L, Zhang YL (2017) Single-molecule protein folding experiments using high-resolution optical tweezers. Methods Mol Biol 1486:357–390CrossRefGoogle Scholar
  53. 53.
    Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600CrossRefGoogle Scholar
  54. 54.
    Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Department of Cell BiologyYale University School of MedicineNew HavenUSA
  3. 3.Integrated Graduate Program in Physical and Engineering BiologyNew HavenUSA

Personalised recommendations