SNAREs pp 303-322 | Cite as

Reconstituted Proteoliposome Fusion Mediated by Yeast SNARE-Family Proteins

  • Joji MimaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)


Membrane fusion mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-family proteins is an essential process for intracellular membrane trafficking in all eukaryotic cells, which delivers proteins and lipids to their appropriate subcellular membrane compartments such as organelles and plasma membrane. The molecular basis of SNARE-mediated membrane fusion has been revealed by studying fusion of reconstituted proteoliposomes bearing purified SNARE-family proteins and chemically defined lipid species. This chapter describes the detailed experimental protocols for (1) purification of recombinant SNARE-family and SM (Sec1/Munc18-family) proteins in the yeast Saccharomyces cerevisiae; (2) preparation of reconstituted proteoliposomes bearing purified yeast SNARE proteins; and (3) developing an assay to monitor lipid mixing between reconstituted SNARE-bearing proteoliposomes. Lipid mixing assays for reconstituted SNARE-bearing proteoliposomes are useful for evaluating the intrinsic capacity of SNARE-family proteins to directly catalyze membrane fusion and to determine the specificity of membrane fusion.

Key words

Membrane reconstitution Membrane trafficking Membrane fusion SNARE protein Liposome Proteoliposome Lipid mixing assay Saccharomyces cerevisiae 



This work was supported by the Program to Disseminate Tenure Tracking System from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) and Grants-in-Aid for Scientific Research from MEXT to J.M.


  1. 1.
    Jahn R, Lang T, Südhof TC (2003) Membrane fusion. Cell 112:519–533CrossRefGoogle Scholar
  2. 2.
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166CrossRefGoogle Scholar
  3. 3.
    Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664CrossRefGoogle Scholar
  4. 4.
    Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136CrossRefGoogle Scholar
  5. 5.
    Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643CrossRefGoogle Scholar
  6. 6.
    Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17:465–479CrossRefGoogle Scholar
  7. 7.
    Wickner W, Rizo J (2017) A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 28:707–711CrossRefGoogle Scholar
  8. 8.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525CrossRefGoogle Scholar
  9. 9.
    Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149CrossRefGoogle Scholar
  10. 10.
    Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827CrossRefGoogle Scholar
  11. 11.
    Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6:a022616CrossRefGoogle Scholar
  12. 12.
    Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 167:1087–1098CrossRefGoogle Scholar
  13. 13.
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772CrossRefGoogle Scholar
  14. 14.
    McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Söllner TH, Rothman JE (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153–159CrossRefGoogle Scholar
  15. 15.
    Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D, Küster P, König M, Seidel C, Jahn R (2004) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci U S A 101:2858–2863CrossRefGoogle Scholar
  16. 16.
    Mima J, Hickey CM, Xu H, Jun Y, Wickner W (2008) Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J 27:2031–2042CrossRefGoogle Scholar
  17. 17.
    Ma C, Su L, Seven AB, Xu Y, Rizo J (2013) Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:421–425CrossRefGoogle Scholar
  18. 18.
    Izawa R, Onoue T, Furukawa N, Mima J (2012) Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. J Biol Chem 287:3445–3453CrossRefGoogle Scholar
  19. 19.
    Furukawa N, Mima J (2014) Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci Rep 4:4277CrossRefGoogle Scholar
  20. 20.
    Burri L, Lithgow T (2004) A complete set of SNAREs in yeast. Traffic 5:45–52CrossRefGoogle Scholar
  21. 21.
    Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 95:15781–15786CrossRefGoogle Scholar
  22. 22.
    Zinser E, Daum G (1995) Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11:493–536CrossRefGoogle Scholar
  23. 23.
    Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099CrossRefGoogle Scholar
  24. 24.
    Lentz BR (2007) PEG as a tool to gain insight into membrane fusion. Eur Biophys J 36:315–326CrossRefGoogle Scholar
  25. 25.
    Dennison SM, Bowen ME, Brunger AT, Lentz BR (2006) Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys J 90:1661–1675CrossRefGoogle Scholar
  26. 26.
    Hickey CM, Wickner W (2010) HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Mol Biol Cell 21:2297–2305CrossRefGoogle Scholar
  27. 27.
    Zick M, Wickner W (2013) The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes. Mol Biol Cell 24:3746–3753CrossRefGoogle Scholar
  28. 28.
    Grabowski R, Gallwitz D (1997) High-affinity binding of the yeast cis-Golgi t-SNARE, Sed5p, to wild-type and mutant Sly1p, a modulator of transport vesicle docking. FEBS Lett 411:169–172CrossRefGoogle Scholar
  29. 29.
    Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Südhof TC (2002) Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell 2:295–305CrossRefGoogle Scholar
  30. 30.
    Peng R, Gallwitz D (2002) Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157:645–655CrossRefGoogle Scholar
  31. 31.
    Gallwitz D, Jahn R (2003) The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. Trends Biochem Sci 28:113–116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Protein ResearchOsaka UniversityOsakaJapan

Personalised recommendations