SNAREs pp 237-249 | Cite as

Functional Reconstitution of Intracellular Vesicle Fusion Using Purified SNAREs and Sec1/Munc18 (SM) Proteins

  • Haijia YuEmail author
  • Lauren Crisman
  • Michael H. B. Stowell
  • Jingshi ShenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)


The fusion of intracellular vesicles with target membranes is mediated by two classes of conserved molecules—soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAP receptors or SNAREs) and Sec1/Munc18 (SM) proteins. A conserved function of SM proteins is to recognize their cognate trans-SNARE complexes and accelerate fusion kinetics. Here, we describe a physiologically relevant reconstitution system in which macromolecular crowding agents are included to recapitulate the crowded intracellular environment. Through this system, we elucidate the molecular mechanisms by which SNAREs and SM proteins drive vesicle fusion.

Key words

SNARE SM protein Vesicle fusion Membrane fusion Reconstitution Lipid mixing Content mixing Macromolecular crowding 



This work was supported by National Institutes of Health grants GM102217 and DK095367 (JS).


  1. 1.
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science (New York, NY) 323:474–477CrossRefGoogle Scholar
  2. 2.
    Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324CrossRefGoogle Scholar
  3. 3.
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772CrossRefGoogle Scholar
  4. 4.
    Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664CrossRefGoogle Scholar
  5. 5.
    Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643CrossRefGoogle Scholar
  6. 6.
    Gao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, Rothman JE, Zhang Y (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science (New York, NY) 337:1340–1343CrossRefGoogle Scholar
  7. 7.
    Melia TJ, Weber T, McNew JA, Fisher LE, Johnston RJ, Parlati F, Mahal LK, Sollner TH, Rothman JE (2002) Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 158:929–940CrossRefGoogle Scholar
  8. 8.
    Xu T, Rammner B, Margittai M, Artalejo AR, Neher E, Jahn R (1999) Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99:713–722CrossRefGoogle Scholar
  9. 9.
    Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science (New York, NY) 313:673–676CrossRefGoogle Scholar
  10. 10.
    Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896CrossRefGoogle Scholar
  11. 11.
    Zhou P, Bacaj T, Yang X, Pang ZP, Sudhof TC (2013) Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Neuron 80:470–483CrossRefGoogle Scholar
  12. 12.
    Xu H, Zick M, Wickner WT, Jun Y (2011) A lipid-anchored SNARE supports membrane fusion. Proc Natl Acad Sci U S A 108:17325–17330CrossRefGoogle Scholar
  13. 13.
    Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–351CrossRefGoogle Scholar
  14. 14.
    Dulubova I, Khvotchev M, Liu S, Huryeva I, Sudhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 104:2697–2702CrossRefGoogle Scholar
  15. 15.
    Novick P, Schekman R (1979) Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 76:1858–1862CrossRefGoogle Scholar
  16. 16.
    Pevsner J, Hsu SC, Scheller RH (1994) N-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci U S A 91:1445–1449CrossRefGoogle Scholar
  17. 17.
    Garcia EP, Gatti E, Butler M, Burton J, De Camilli P (1994) A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci U S A 91:2003–2007CrossRefGoogle Scholar
  18. 18.
    Carr CM, Rizo J (2010) At the junction of SNARE and SM protein function. Curr Opin Cell Biol 22:488–495CrossRefGoogle Scholar
  19. 19.
    Burgoyne RD, Barclay JW, Ciufo LF, Graham ME, Handley MT, Morgan A (2009) The functions of Munc18-1 in regulated exocytosis. Ann N Y Acad Sci 1152:76–86CrossRefGoogle Scholar
  20. 20.
    Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science (New York, NY) 257:255–259CrossRefGoogle Scholar
  21. 21.
    Elferink LA, Trimble WS, Scheller RH (1989) Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J Biol Chem 264:11061–11064PubMedGoogle Scholar
  22. 22.
    Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052CrossRefGoogle Scholar
  23. 23.
    Sudhof TC, Baumert M, Perin MS, Jahn R (1989) A synaptic vesicle membrane protein is conserved from mammals to drosophila. Neuron 2:1475–1481CrossRefGoogle Scholar
  24. 24.
    Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 a resolution. Nature 395:347–353CrossRefGoogle Scholar
  25. 25.
    Weimer RM, Richmond JE, Davis WS, Hadwiger G, Nonet ML, Jorgensen EM (2003) Defects in synaptic vesicle docking in unc-18 mutants. Nat Neurosci 6:1023–1030CrossRefGoogle Scholar
  26. 26.
    Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Sudhof TC (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science (New York, NY) 287:864–869CrossRefGoogle Scholar
  27. 27.
    Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362CrossRefGoogle Scholar
  28. 28.
    Rathore SS, Bend EG, Yu H, Hammarlund M, Jorgensen EM, Shen J (2010) Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Proc Natl Acad Sci U S A 107:22399–22406CrossRefGoogle Scholar
  29. 29.
    Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C, Bacaj T, Sudhof TC (2012) Syntaxin-1 N-peptide and H(abc)-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J 32:159CrossRefGoogle Scholar
  30. 30.
    Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–195CrossRefGoogle Scholar
  31. 31.
    Rathore SS, Ghosh N, Ouyang Y, Shen J (2011) Topological arrangement of the intracellular membrane fusion machinery. Mol Biol Cell 22:2612–2619CrossRefGoogle Scholar
  32. 32.
    Shen J, Rathore S, Khandan L, Rothman JE (2010) SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion. J Cell Biol 190:55–63CrossRefGoogle Scholar
  33. 33.
    Yu H, Rathore SS, Shen C, Liu Y, Ouyang Y, Stowell MH, Shen J (2015) Reconstituting intracellular vesicle fusion reactions: the essential role of macromolecular crowding. J Am Chem Soc 137:12873–12883CrossRefGoogle Scholar
  34. 34.
    Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3:267–277CrossRefGoogle Scholar
  35. 35.
    Yu H, Rathore SS, Lopez JA, Davis EM, James DE, Martin JL, Shen J (2013) Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 110:E3271–E3280CrossRefGoogle Scholar
  36. 36.
    Shen C, Rathore SS, Yu H, Gulbranson DR, Hua R, Zhang C, Schoppa NE, Shen J (2015) The trans-SNARE-regulating function of Munc18-1 is essential to synaptic exocytosis. Nat Commun 6:8852CrossRefGoogle Scholar
  37. 37.
    Deak F, Xu Y, Chang WP, Dulubova I, Khvotchev M, Liu X, Sudhof TC, Rizo J (2009) Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. J Cell Biol 184:751–764CrossRefGoogle Scholar
  38. 38.
    Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM (2015) A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science (New York, NY) 349:1111–1114CrossRefGoogle Scholar
  39. 39.
    Gulbranson DR, Davis EM, Demmitt BA, Ouyang Y, Ye Y, Yu H, Shen J (2017) RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis. Proc Natl Acad Sci U S A 114(39):E8224–E8233CrossRefGoogle Scholar
  40. 40.
    Leto D, Saltiel AR (2012) Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13:383–396CrossRefGoogle Scholar
  41. 41.
    Weber T, Parlati F, McNew JA, Johnston RJ, Westermann B, Sollner TH, Rothman JE (2000) SNAREpins are functionally resistant to disruption by NSF and alphaSNAP. J Cell Biol 149:1063–1072CrossRefGoogle Scholar
  42. 42.
    Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528CrossRefGoogle Scholar
  43. 43.
    Ellena JF, Liang B, Wiktor M, Stein A, Cafiso DS, Jahn R, Tamm LK (2009) Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation. Proc Natl Acad Sci U S A 106:20306–20311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
  2. 2.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations