SNAREs pp 221-236 | Cite as

Using Nanodiscs to Probe Ca2+-Dependent Membrane Interaction of Synaptotagmin-1

  • Ekaterina Stroeva
  • Shyam S. KrishnakumarEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)


In this chapter, we introduce a nanodisc-based experimental platform to study Ca2+-triggered membrane interaction of synaptotagmin-1. We describe and discuss in detail how to assemble this soluble mimetic of the docked vesicle–plasma membrane junction, with fluorescently labeled synaptotagmin-1 bound to trans SNAREpins assembled between nanodiscs and present the stopped-flow rapid mixing method used to monitor the conformational dynamics of Ca2+-activation process on a millisecond timescale.

Key words

Nanodiscs Soluble membrane-mimetic Synaptotagmin-1 SNARE proteins Calcium activation Membrane interaction Fluorescent labeling Rapid mixing stopped-flow 



This work was supported by National Institute of Health (NIH) grant DK027044. We thank Jeff Coleman for critical inputs and suggestions.


  1. 1.
    Gerber SH, Sudhof TC (2002) Molecular determinants of regulated exocytosis. Diabetes 51(Suppl 1):S3–S11CrossRefGoogle Scholar
  2. 2.
    Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293CrossRefGoogle Scholar
  3. 3.
    Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690CrossRefGoogle Scholar
  4. 4.
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477CrossRefGoogle Scholar
  5. 5.
    Pang ZP, Sudhof TC (2010) Cell biology of Ca2+−triggered exocytosis. Curr Opin Cell Biol 22:496–505CrossRefGoogle Scholar
  6. 6.
    Sudhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4:a011353CrossRefGoogle Scholar
  7. 7.
    Krishnakumar SS, Kummel D, Jones SJ, Radoff DT, Reinisch KM, Rothman JE (2013) Conformational dynamics of calcium-triggered activation of fusion by Synaptotagmin-1. Biophys J 105:2507–2516CrossRefGoogle Scholar
  8. 8.
    Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11: Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231CrossRefGoogle Scholar
  9. 9.
    Shi L, Howan K, Shen QT, Wang YJ, Rothman JE, Pincet F (2013) Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat Protoc 8:935–948CrossRefGoogle Scholar
  10. 10.
    Shi L, Shen QT, Kiel A, Wang J, Wang HW, Melia TJ, Rothman JE, Pincet F (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–1359CrossRefGoogle Scholar
  11. 11.
    Hui E, Gaffaney JD, Wang Z, Johnson CP, Evans CS, Chapman ER (2011) Mechanism and function of Synaptotagmin-1-mediated membrane apposition. Nat Struct Mol Biol 18:813–821CrossRefGoogle Scholar
  12. 12.
    Bello OD, Auclair SM, Rothman JE, Krishnakumar SS (2016) Using ApoE Nanolipoprotein particles to analyze SNARE-induced fusion pores. Langmuir 32:3015–3023CrossRefGoogle Scholar
  13. 13.
    Mahal LK, Sequeira SM, Gureasko JM, Sollner TH (2002) Calcium-independent stimulation of membrane fusion and SNAREpin formation by Synaptotagmin-1 I. J Cell Biol 158:273–282CrossRefGoogle Scholar
  14. 14.
    Goldmann WH, Guttenberg Z, Ezzell RM, Isenberg G (1998) The study of fast reaction stopped flow method. In: Isenberg G (ed) Modern optics, electronics and high precision techniques in cell biology. Principles and practice. Springer, Berlin, HeidelbergGoogle Scholar
  15. 15.
    Hargrove MS (2005) Ligand binding with stopped-flow rapid mixing. In: Ulrich NG (ed) Protein-ligand interactions, Methods in molecular biology, vol 305. Humana Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cell BiologyYale University School of MedicineNew HavenUSA
  2. 2.Department of Clinical and Experimental Epilepsy, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations