SNAREs pp 3-13 | Cite as

Molecular Dynamics Simulations of the SNARE Complex

  • Maria BykhovskaiaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)


Molecular dynamics (MD) simulations enable in silico investigations of the dynamic behavior of proteins and protein complexes. Here, we describe MD simulations of the SNARE complex and its interactions with the neuronal protein complexin. Complexin is an effector of neuronal secretion that inhibits spontaneous fusion and is thought to clamp the fusion process via the interactions with the SNARE complex. We describe MD simulations of the SNARE complex alone and bound to complexin. The MD simulations under external forces imitating the repulsion between lipid bilayers enabled us to investigate unraveling and assembly of the SNARE complex.

Key words

Synaptic transmission Exocytosis Synaptobrevin Syntaxin SNAP25 Forces Assembly 


  1. 1.
    Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652. Scholar
  2. 2.
    Roux B, Schulten K (2004) Computational studies of membrane channels. Structure 12(8):1343–1351. Scholar
  3. 3.
    Zhou HX, McCammon JA (2010) The gates of ion channels and enzymes. Trends Biochem Sci 35(3):179–185. Scholar
  4. 4.
    Miao Y, McCammon JA (2016) G-protein coupled receptors: advances in simulation and drug discovery. Curr Opin Struct Biol 41:83–89. Scholar
  5. 5.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802CrossRefGoogle Scholar
  6. 6.
    Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA, Young C, Deneroff MM et al. (2009) Millisecond-scale molecular dynamics simulations on Anton. Proceedings of the conference on high performance computing, networking, storage and analysis, vol SC09. ACM, New YorkGoogle Scholar
  7. 7.
    Bykhovskaia M, Jagota A, Gonzalez A, Vasin A, Littleton JT (2013) Interaction of the complexin accessory helix with the C-terminus of the SNARE complex: molecular-dynamics model of the fusion clamp. Biophys J 105(3):679–690CrossRefGoogle Scholar
  8. 8.
    Vasin A, Volfson D, Littleton JT, Bykhovskaia M (2016) Interaction of the complexin accessory helix with synaptobrevin regulates spontaneous fusion. Biophys J 111(9):1954–1964. Scholar
  9. 9.
    Huntwork S, Littleton JT (2007) A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci 10(10):1235–1237CrossRefGoogle Scholar
  10. 10.
    Brose N (2008) For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9(9):1403–1413. Scholar
  11. 11.
    Reim K, Mansour M, Varoqueaux F, McMahon HT, Sudhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+−dependent neurotransmitter release. Cell 104(1):71–81CrossRefGoogle Scholar
  12. 12.
    Kummel D, Krishnakumar SS, Radoff DT, Li F, Giraudo CG, Pincet F, Rothman JE, Reinisch KM (2011) Complexin cross-links prefusion SNAREs into a zigzag array. Nat Struct Mol Biol 18(8):927–U1603CrossRefGoogle Scholar
  13. 13.
    Durrieu MP, Lavery R, Baaden M (2008) Interactions between neuronal fusion proteins explored by molecular dynamics. Biophys J 94(9):3436–3446CrossRefGoogle Scholar
  14. 14.
    Bock LV, Hutchings B, Grubmuller H, Woodbury DJ (2010) Chemomechanical regulation of SNARE proteins studied with molecular dynamics simulations. Biophys J 99(4):1221–1230CrossRefGoogle Scholar
  15. 15.
    Ghahremanpour MM, Mehrnejad F, Moghaddam ME (2010) Structural studies of SNARE complex and its interaction with complexin by molecular dynamics simulation. Biopolymers 93(6):560–570PubMedGoogle Scholar
  16. 16.
    Tikhonov DB, Zhorov BS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure. Mol Pharmacol 82(1):97–104CrossRefGoogle Scholar
  17. 17.
    Bruhova I, Zhorov BS (2010) A homology model of the pore domain of a voltage-gated calcium channel is consistent with available SCAM data. J Gen Physiol 135(3):261–274CrossRefGoogle Scholar
  18. 18.
    Ernst JA, Brunger AT (2003) High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex. J Biol Chem 278(10):8630–8636CrossRefGoogle Scholar
  19. 19.
    Li ZQ, Scheraga HA (1987) Monte-Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci U S A 84(19):6611–6615CrossRefGoogle Scholar
  20. 20.
    Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, Rizo J (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33(3):397–409CrossRefGoogle Scholar
  21. 21.
    Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145. Scholar
  22. 22.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. Scholar
  23. 23.
    Mackerell AD Jr (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604CrossRefGoogle Scholar
  24. 24.
    Fortoul N, Singh P, Hui C-Y, Bykhovskaia M, Jagota A (2015) Coarse-grained model of the Snare complex determines the number of Snares required for docking. Biophys J 108(2):154aCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of Anatomy and Cell BiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations